ATTO - Transfer Size vs Performance

I'm keeping our ATTO test around because it's a tool that can easily be run by anyone and it provides a quick look into performance scaling across multiple transfer sizes. I'm providing the results in a slightly different format because the line graphs didn't work well with multiple drives and creating the graphs was rather painful since the results had to be manually inserted cell be cell as ATTO doesn't provide a 'save as CSV' functionality.

Intel SSD 750 1.2TB (PCIe 3.0 x4 - NVMe)

 

AS-SSD Incompressible Sequential Performance

I'm also keeping AS-SSD around as it's freeware like ATTO and can be used by our readers to confirm that their drives operate properly. AS-SSD uses incompressible data for all of its transfers, so it's also a valuable tool when testing SandForce based drives that perform worse with incompressible data.

Incompressible Sequential Read Performance

Incompressible Sequential Write Performance

TRIM Validation

The move from Windows 7 to 8.1 introduced some problems with the methodology we have previously used to test TRIM functionality, so I had to come up with a new way to test. I tested a couple of different methods, but ultimately I decided to go with the easiest one that can actually be used by anyone. The software is simply called trimcheck and it was made by a developer that goes by the name CyberShadow in GitHub. 

Trimcheck tests TRIM by creating a small, unique file and then deleting it. Next the program will check whether the data is still accessible by reading the raw LBA locations. If the data that is returned by the drive is all zeros, it has received the TRIM command and TRIM is functional. 

And as expected TRIM appears to be working.

Mixed Read/Write Performance Final Words
Comments Locked

132 Comments

View All Comments

  • Kristian Vättö - Friday, April 3, 2015 - link

    As I explained in the article, I see no point in testing such high queue depths in a client-oriented review because the portion of such IOs is marginal. We are talking about a fraction of a percent, so while it would show big numbers it has no relevance to the end-user.
  • voicequal - Saturday, April 4, 2015 - link

    Since you feel strongly enough to levy a personal attack, could you also explain why you think QD128 is important? Anandtech's storage benchmarks are likely a much better indication of user experience unless you have a very specific workload in mind.
  • d2mw - Friday, April 3, 2015 - link

    Guys why are you cutpasting the same old specs table and formulaic article? For a review of the first consumer NVMe I'm sorely disappointed you didn't touch on latency metrics: one of the most important improvements with the NVMe bus
  • Kristian Vättö - Friday, April 3, 2015 - link

    There are several latency graphs in the article and I also suggest that you read the following article to better understand what latency and other storage metrics actually mean (hint: latency isn't really different from IOPS and throughput).

    http://www.anandtech.com/show/8319/samsung-ssd-845...
  • Per Hansson - Friday, April 3, 2015 - link

    Hi Kristian, what evidence do you have that the firmware in the SSD 750 is any different from that found in the DC P3600 / P3700?
    According to leaked reports released before they have the same firmware: http://www.tweaktown.com/news/43331/new-consumer-i...

    And if you read the Intel changelog you see in firmware 8DV10130: "Drive sub-4KB sequential write performance may be below 1MB/sec"
    http://downloadmirror.intel.com/23931/eng/Intel_SS...
    Which was exactly what you found in the original review of the P3700:
    http://www.anandtech.com/show/8147/the-intel-ssd-d...
    http://www.anandtech.com/bench/product/1239

    Care to retest with the new firmware?
    I suspect you will get identical performance.
  • Per Hansson - Saturday, April 4, 2015 - link

    I should be more clear: I mean that you retest the P3700.
    And obviously the performance of the 750 wont match that, as it is based of the P3500.
    But I think you get what I mean anyway ;)
  • djsvetljo - Friday, April 3, 2015 - link

    I am unclear of which connector will this use. Does it use the video card PCI-E port?

    I have MSI Z97 MATE board that has one PCI-E gen3 x16 and one PCI-E gen2 x 4. Will I be able to use it and will I be limited somehow?
  • DanNeely - Friday, April 3, 2015 - link

    if you use the 2.0 x4 slot your maximum throughput will top out at 2gb/sec. For client workloads this probably won't matter much since only some server workloads can hit situations where the drive can exceed that rate.
  • djsvetljo - Friday, April 3, 2015 - link

    So it uses the GPU express port although the card pins are visually shorter ?
  • eSyr - Friday, April 3, 2015 - link

    > although in real world the maximum bandwidth is about 3.2GB/s due to PCIe inefficiency
    What does this phrase mean? If you're referring to 8b10b encoding, this is plainly false, since PCIe gen 3 utilized 128b130b coding. If you're referring to the overheds related to TLP and DLLP headers, this is depends on device's and PCIe RC's maximum transaction size. But, even with (minimal) 128 byte limit it would be 3.36 GB/s. In fact, modern PCIe RCs support much larger TLPs, thus eliminating header-related overheads.

Log in

Don't have an account? Sign up now