HTPC Aspects : Decoding & Rendering Benchmarks

Our decoding and rendering benchmarks consists of standardized test clips (varying codecs, resolutions and frame rates) being played back through MPC-HC v1.7.3 (which comes with LAV Filters 0.60.1.5 in-built). GPU usage is tracked through GPU-Z logs and power consumption at the wall is also reported. The former provides hints on whether frame drops could occur, while the latter is an indicator of the efficiency of the platform for the most common HTPC task - video playback. Starting with this review, we have added two new streams to our benchmark suite. The first one is a 1080p24 H.264 clip (the type of content that most HTPC users watch), while the second one is a 2160p30 (4Kp30) H.264 clip (which will give us a way to test the downscaling performance of various codec / renderer combinations).

In the course of our testing, we found that our standard 1080p60 H.264 clip played with lots of artifacts on the GT 750Ti. This happened with both MPC-HC and CyberLink PowerDVD13. Using the same drivers on the GT 640 resulted in perfect playback. [Update: NVIDIA got back to us indicating that this is a Maxwell-related driver issue. We are waiting for new drivers]

It will be interesting to determine the reason behind this issue. Not all 1080p60 clips had this problem, though. On the positive side, both the GT 750Ti and the GT 640 (as expected) were able to decode UHD / 4K streams using the GPU. The 7750 fell back to software decode (avcodec) for those streams despite the relevant setting being ticked in the LAV Video Decoder configuration.

Before proceeding to the renderer benchmark numbers, it is important to explain the GPU loading numbers in the tables below. It goes without saying that the GPU loading of NVIDIA cards must obviously not be compared directly to the AMD card. Even amongst the NVIDIA cards, the loading numbers don't signify the same thing. The GPU load numbers reported by GPU-Z don't take into consideration the core clock. Maxwell GPUs have more fine-grained clock control. For example, when playing back 4Kp30 material, the 750 Ti's core clock is around 824 MHz, but, when playing 1080p24 material, it scales down to 135 MHz. Kepler, on the other hand, seems to use 824 MHz when playing back both 4Kp30 and 1080p24 material. For 480i, it goes down to 324 MHz. In terms of GPU loading on the GTX 750 Ti, we find 4Kp30 playback reporting a load of 2.65%, while 1080p60 reports 46% under EVR. The 2% loading is under much higher core clocks compared to the clock being used for 1080p60 playback. For the GT 640, this 'disconnect' is much harder to observe, since the clocks are same for most HD material. However, in the GT 640 segment of the screenshot below, it is possible to observe a higher GPU load of 34% for 480i60 material (the third part) compared to a lower value at higher clocks for 1080p24 material.

GPU-Z 0.7.7 Sensor Readings - Fine-grained clock control in Maxwell (4Kp30 and 1080p24 playback) compared to Kepler (4Kp30, 1080p24 and 480i60 playback). Core-clock / Load numbers 'disconnect' can be observed in both cases for Maxwell, but only in the 480i60 case for Kepler.

In any case, if the GPU usage is hovering above 95%, it is likely that the playback suffered from dropped frames. In terms of apples-to-apples comparison for efficiency purposes, the power consumption at the wall reigns supreme.

Enhanced Video Renderer (EVR)

The Enhanced Video Renderer is the default renderer made available by Windows 8.1. It is a lean renderer in terms of usage of system resources since most of the aspects are offloaded to the GPU drivers directly. EVR is mostly used in conjunction with native DXVA2 decoding. The GPU is not taxed much by the EVR despite hardware decoding also taking place. In our evaluation, all video post processing steps were left for MPC-HC to decide (except for the explicit activation of inverse telecine). In all our tests, we used the native DXVA2 decoder provided by MPC-HC's internal LAV Video Decoder. Deinterlacing mode was set to aggressive in the LAV Video Decoder setting. The GT 750Ti's VPU loading barely went above 40% even when decoding 1080p60 or 4Kp30 clips.

Enhanced Video Renderer (EVR) Performance
Stream GTX 750 Ti GT 640 HD 7750
  GPU Load (%) Power GPU Load (%) Power GPU Load (%) Power
480i60 MPEG2 44.67 57.15 W 20.92 68.74 W 14.76 68.42 W
576i50 H264 55.57 57.25 W 19.28 69.37 W 12.16 69.01 W
720p60 H264 38.91 56.75 W 36.05 61.08 W 9.90 68.16 W
1080i60 MPEG2 80.92 59.53 W 32.76 71.27 W 15.06 69.03 W
1080i60 H264 55.87 63.34 W 35.79 73.11 W 18.78 71.21 W
1080i60 VC1 79.29 60.69 W 35.07 72.63 W 18.91 70.97 W
1080p60 H264 45.53 57.67 W 39.29 61.91 W 11.87 69.02 W
1080p24 H264 15.69 55.06 W 15.61 58.26 W 4.62 67.47 W
4Kp30 H264 2.65 63.89 W 24.21 67.33 W 11.36 76.90 W

 

Enhanced Video Renderer - Custom Presenter (EVR-CP)

EVR-CP is the default renderer used by MPC-HC. It is slightly more resource intensive compared to EVR, as some explicit post processing steps are done on the GPU without going through DXVA post processing API calls provided by the driver.

Enhanced Video Renderer - Custom Presenter (EVR-CP) Performance
Stream GTX 750 Ti GT 640 HD 7750
  GPU Load (%) Power GPU Load (%) Power GPU Load (%) Power
480i60 MPEG2 61.58 58.99 W 18.97 69.22 W 11.99 69.93 W
576i50 H264 55.45 57.93 W 17.97 68.81 W 9.93 69.85 W
720p60 H264 54.18 58.88 W 47.97 63.17 W 12.54 70.93 W
1080i60 MPEG2 17.69 68.38 W 39.84 73.85 W 22.82 72.01 W
1080i60 H264 16.92 70.14 W 42.62 74.35 W 21.97 73.43 W
1080i60 VC1 17.45 69.77 W 41.79 73.99 W 22.03 73.56 W
1080p60 H264 56.5 60.07 W 19.80 70.64 W 13.36 71.61 W
1080p24 H264 25.61 56.83 W 23.80 60.36 W 9.68 69.20 W
4Kp30 H264 5.52 67.11 W 27.51 70.76 W 26.10 84.03 W

 

Experimenting with madVR

madVR provides plenty of options to tweak. For our evaluation, we considered two main scenarios. Our first run was with the default settings ( Chroma upscaling: Bicubic with Sharpness 75, Image upscaling: Lanczos 3-tap and Image downscaling: Catmull-Rom). With these settings, both the GT 640 and 750Ti processed all our test clips without dropping frames. The HD 7750 failed with the 720p60 and 1080p60 clips.

madVR (Default Settings) Performance
Stream GTX 750 Ti GT 640 HD 7750
  GPU Load (%) Power GPU Load (%) Power GPU Load (%) Power
480i60 MPEG2 76.02 62.27 W 28.77 73.68 W 20.91 74.76 W
576i50 H264 73.21 62.10 W 30.93 74.24 W 20.88 75.40 W
720p60 H264 19.34 69.89 W 35.18 75.42 W 25.11 78.46 W
1080i60 MPEG2 23.16 71.08 W 49.53 77.78 W 27.74 78.22 W
1080i60 H264 24.87 71.79 W 52.27 78.26 W 28.13 79.67 W
1080i60 VC1 24.47 71.06 W 51.48 77.74 W 27.88 79.18 W
1080p60 H264 20.49 70.43 W 42.30 76.45 W 29.72 79.16 W
1080p24 H264 41.70 59.20 W 43.98 63.41 W 14.03 72.08 W
4Kp30 H264 27.51 73.24 W 66.72 81.54 W 23.06 100.94 W

The second run was with our stress settings (Chroma and image upscaling : Jinc 3-tap with anti-ringing filter activated, Image downscaling : Lanczos 3-tap with anti-ringing filter activated). With these settings, the GT 750Ti was able to process all test clips without dropping frames. However, the GT 640 failed the 576i50 / 720p60 / 1080i60 / 4Kp30 clips. The HD 7750 failed the 720p60, 1080p60 and 4Kp30 clips.

madVR (Stress Settings) Performance
Stream GTX 750 Ti GT 640 HD 7750
  GPU Load (%) Power GPU Load (%) Power GPU Load (%) Power
480i60 MPEG2 50.53 76.35 W 90.48 88.77 W 70.38 89.99 W
576i50 H264 55.08 76.92 W 95.09 92.75 W 80.21 91.65 W
720p60 H264 63.65 84.37 W 96.82 93.72 W 92.64 95.85 W
1080i60 MPEG2 51.29 76.43 W 95.93 89.86 W 63.32 88.58 W
1080i60 H264 52.65 77.06 W 94.9 90.63 W 64.26 89.64 W
1080i60 VC1 51.71 77.33 W 96.86 90.31 W 64.28 89.09 W
1080p60 H264 54.43 77.92 W 96.63 91.71 W 73.20 92.09 W
1080p24 H264 76.58 62.23 W 38.04 75.26 W 24.82 77.68 W
4Kp30 H264 77.52 99.33 W 99 101.13 W 95.71 117.07 W

As entry level HTPC GPUs become more and more powerful, madVR keeps pushing the bar higher too. Recently, NNEDI3 was added as an upscaling algorithm option. In our experiments with a 1080p display output, NNEDI3 and Jinc 3-tap (for chroma and luma upscaling) work for 1080p24 or lower resolution / frame rate clips in the 750Ti and 7750, but not in the GT 640.  With NNEDI3, the NVIDIA driver is a bit buggy, with a greenish tinge all through. Any higher resolution / frame rate immediately chokes. Jinc 3-taps works fine, though. 4K to 1080p downscaling results in greenish screens intermittently, finally ending up with a resetting Direct 3D Device failure. The downscaling path seems to be buggy, either due to driver issues or bugs in madVR v0.87.4.

HTPC Aspects : Network Streaming Performance HTPC Aspects : Miscellaneous Factors
Comments Locked

177 Comments

View All Comments

  • RealiBrad - Tuesday, February 18, 2014 - link

    If you were to run the AMD card 10hrs a day with the avg cost of electricity in the US, you would pay around $22 more a year in electricity. The AMD card gives a %19 boost in power for a %24.5 boost in power usage. That means that the Nvidia card is around %5 more efficient. Its nice that they got the power envelope so low, but if you look at the numbers, not huge.

    The biggest factor is the supply coming out of AMD. Unless they start making more cards, the the 750Ti will be the better buy.
  • Homeles - Tuesday, February 18, 2014 - link

    Your comment is very out of touch with reality, in regards to power consumption/efficiency:

    http://www.techpowerup.com/reviews/NVIDIA/GeForce_...

    It is huge.
  • mabellon - Tuesday, February 18, 2014 - link

    Thank you for that link. That's an insane improvement. Can't wait to see 20nm high end Maxwell SKUs.
  • happycamperjack - Wednesday, February 19, 2014 - link

    That's for gaming only, it's compute performance/watt is still horrible compared to AMD though. I wonder when can Nvidia catch up.
  • bexxx - Wednesday, February 19, 2014 - link

    http://media.bestofmicro.com/9/Q/422846/original/L...

    260kh/s at 60 watts is actually very high, that is basically matching 290x in kh/watt ~1000/280watts, and beating out r7 265 or anything... if you only look at kh/watt.
  • ninjaquick - Thursday, February 20, 2014 - link

    To be honest, all nvidia did was increase the granularity of power gating and core states, so in the event of pure burn, the TDP is hit, and the perf will (theoretically) droop.

    The reason the real world benefits from this is simply the way rendering works, under DX11. Commands are fast and simple, so increasing the number of parallel queues allows for faster completion and lower power (Average). So the TDP is right, even if the working wattage per frame is just as high as any other GPU. AMD doesn't have that granularity implemented in GCN yet, though they do have the tech for it.

    I think this is fairly silly, Nvidia is just riding the coat-tails of massive GPU stalling on frame-present.
  • elerick - Tuesday, February 18, 2014 - link

    Since the performance charts have 650TI Boost i looked up the TDP of 140W. When compared to the Maxwell 750TI with 60W TDP I am in awe of the performance per watt. I sincerely hope that the 760/770/780 with 20nm to give the performance a sharper edge but even if they are not it will still give people with older graphics cards more of a reason to finally upgrade since driver performance tuning will start favoring Maxwell over the next few years.
  • Lonyo - Tuesday, February 18, 2014 - link

    The 650TI/TI Boost aren't cards designed to be efficient. They are cut down cards with sections of the GPU disabled. While 2x perf per watt might be somewhat impressive, it's not that impressive given the comparison is made to inefficient cards.
    Comparing it to something like a GTX650 regular, which is a fully enabled GPU, might be more apt of a comparison, and probably wouldn't give the same perf/watt increases.
  • elerick - Tuesday, February 18, 2014 - link

    Thanks, I haven't been following lower end model cards for either camp. I usually buy $200-$300 class cards.
  • bexxx - Thursday, February 20, 2014 - link

    Still just over 1.8x higher perf/watt: http://www.techpowerup.com/reviews/NVIDIA/GeForce_...

Log in

Don't have an account? Sign up now