Kaveri: Aiming for 1080p30 and Compute

The numerical differences between Kaveri and Richland are easy enough to rattle off – later in the review we will be discussing these in depth – but at a high level AMD is aiming for a middle ground between the desktop model (CPU + discrete graphics) and Apple’s Mac Pro dream (offloading compute onto different discrete graphics cards) by doing the dream on a single processor. At AMD’s Kaveri tech day the following graph was thrown in front of journalists worldwide:

With Intel now on board, processor graphics is a big deal. You can argue whether or not AMD should continue to use the acronym APU instead of SoC, but the fact remains that it's tough to buy a CPU without an integrated GPU.

In the absence of vertical integration, software optimization always trails hardware availability. If you look at 2011 as the crossover year when APUs/SoCs took over the market, it's not much of a surprise that we haven't seen aggressive moves by software developers to truly leverage GPU compute. Part of the problem has been programming model, which AMD hopes to address with Kaveri and HSA. Kaveri enables a full heterogeneous unified memory architecture (hUMA), such that the integrated graphics topology can access the full breadth of memory that the CPU can, putting a 32GB enabled compute device into the hands of developers.

One of the complexities of compute is also time: getting the CPU and GPU to communicate to each other without HSA and hUMA requires an amount of overhead that is not trivial. For compute, this comes in the form of allowing the CPU and GPU to work on the same data set at the same time, effectively opening up all the compute to the same task without asynchronous calls to memory copies and expensive memory checks for coherency.

The issue AMD has with their HSA ecosystem is the need for developers to jump on board. The analogy oft cited is that on Day 1, iOS had very few apps, yet today has millions. Perhaps a small equivocation fallacy comes in here – Apple is able to manage their OS and system in its entirety, whereas AMD has to compete in the same space as non-HSA enabled products and lacks the control. Nevertheless, AMD is attempting to integrate programming tools for HSA (and OpenCL 2.0) as seamlessly as possible to all modern platforms via a HSA Instruction Layer (HSAIL). The goal is for programming languages like Java, C++ and C++ AMP, as well as common acceleration API libraries and toolkits to provide these features at little or no coding cost. This is something our resident compute guru Rahul will be looking at in further detail later on in the review.

On the gaming side, 30 FPS has been a goal for AMD’s integrated graphics solutions for a couple of generations now.

Arguably we could say that any game should be able to do 30 FPS if we turn down the settings far enough, but AMD has put at least one restriction on that: resolution. 1080p is a lofty goal to hold at 30 FPS with some of the more challenging titles of today. In our testing in this review, it was clear that users had a choice – start with a high resolution and turn the settings down, or keep the settings on medium-high and adjust the resolution. Games like BF4 and Crysis 3 are going to tax any graphics card, especially when additional DirectX 11 features come in to play (ambient occlusion, depth of field, global illumination, and bilateral filtering are some that AMD mention).

Introduction and Overview The Steamroller Architecture: Counting Compute Cores and Improvements over Piledriver
Comments Locked

380 Comments

View All Comments

  • jasonelmore - Tuesday, January 14, 2014 - link

    I really wish these were launching in BGA GDDR5 Laptop/Mini ITX Packages.
  • jaydee - Tuesday, January 14, 2014 - link

    Pretty much what I was thinking as well. There are two mini-ITX FM2+ motherboards available on newegg, niether are "thin", and neither have DisplayPort. AMD's opportunity here is to market it's 45W Kaveri as the best CPU/GPU for the price in a small package. They NEED to get outside of the typical ATX, micro-ATX, mini-ATX box and into SFF, have all the ports that everyone wants, be creative with packaging and configurations (like GDDR5). They will never win a war with Intel in the traditional form-factor PCs, which is a rapidly shrinking market anyways.
  • takeship - Tuesday, January 14, 2014 - link

    Agreed. Any build not restricted to half height GPUs is better off going with a cheap intel cpu & discrete card. AMD really should be targeting ultra SFF type builds where Iris Pro is thermally limited, and a dGPU isn't an option.
  • rhx123 - Tuesday, January 14, 2014 - link

    GDDR5 7750's are available half height and at a decent price point, so even in a Low Profile machine a cheap Intel + 7750 is a better option. That's what I'm running anyway. Passively cooled i3 never reaches above 65c and the Saphire 7750 Low Profile is pretty quiet at idle.
  • Mopar63 - Tuesday, January 14, 2014 - link

    The last paragraph of this article shows someone that GETS IT, where Kaveri and the APU design in general is heading.
  • nissangtr786 - Tuesday, January 14, 2014 - link

    I can't believe how right I was, I was saying i3 4130 cpu performance and 2400-2500 3dmark11 gpu performance similar to my gt650m in my laptop. Funnily enough my laptop with i5 3210m at 2.9ghz gt650m with screen takes 87w, if I had an i3 4130 it would take about 92w lets say so it is about right. I am more shocked how spot on I was.
  • HammerStrike - Tuesday, January 14, 2014 - link

    The entire Anand reader base congratulates you on your deep insight and prophetic powers of deduction.
  • nathanddrews - Tuesday, January 14, 2014 - link

    I, for one, welcome our new nissangtr786 overlord.
  • Zorba - Tuesday, January 14, 2014 - link

    It would have been nice to see some non-integrated chips added to the benchmarks like an FX-6300. Ever since the APUs came out, it seems no reviews actually compare high-end iGPU vs moderate dGPU and CPU. Looking at the price, you could get a decent CPU+GPU for the cost of the A10-7850K, so it would be nice to see that as an option.
  • R3MF - Tuesday, January 14, 2014 - link

    "do any AnandTech readers have an interest in an even higher end APU with substantially more graphics horsepower?"

    Yes, and No.

    I do want a higher-end APU, but I'd like to see one with four CPU modules and 256 shaders:

    47% of the kaveri die space is GPU
    http://www.extremetech.com/wp-conten...d-to-intel....
    If you consider that roughly 20% is uncore, that leaves roughly 33% as CPU.
    Give or take, 8 shader cores is fifty percent larger than 4 cpu cores.
    You could double that cpu portion to 66%, and still leave 14% for shader cores.
    Make the total die size just 10% bigger and you have an 8 cpu core APU with 4 HSA enabled shader cores ready to grind through FPU work. pretty much die-size neutral.

Log in

Don't have an account? Sign up now