For an article like this getting a range of CPUs, which includes the most common and popular, is very important.  I have been at AnandTech for just over two years now, and in that time we have had Sandy Bridge, Llano, Bulldozer, Sandy Bridge-E, Ivy Bridge, Trinity and Vishera, of which I tend to get supplied the top end processors of each generation for testing (as a motherboard reviewer, it is important to make the motherboard the limiting factor).  A lot of users have jumped to one of these platforms, although a large number are still on Wolfdale (Core2), Nehalem, Westmere, Phenom II (Thuban/Zosma/Deneb) or Athlon II.  I have attempted to pool all my AnandTech resources, contacts, and personal resources, together to get a good spread of the current ecosystem, with more focus on the modern end of the spectrum.  It is worth nothing that a multi-GPU user is more likely to have the top line Ivy Bridge, Vishera or Sandy Bridge-E CPU, as well as a top range motherboard, rather than an old Wolfdale.  As time progresses I hope to obtain greater ranges of CPU speeds, core counts, and caches to suit almost all tastes.

The CPUs

My criteria for obtaining CPUs was to use at least one from the most recent architectures, as well as a range of cores/modules/threads/speeds.  The basic list as it stands is shown below, with the CPU.GPU on the left showing what we were able to test:

VIA
CPU GPU Name IGP   Socket C / M (T) Speed Turbo L2/L3
    L2007   Nano BGA400 1 (1) 1600   1 MB / -
AMD
CPU GPU Name IGP   Socket C / M (T) Speed Turbo L2/L3
    E-350   Fusion FT1 2 (2) 1600   1 MB / -
    A6-3650   Llano FM1 4 (4) 2600   4 MB / -
    A8-3850   Llano FM1 4 (4) 2900   4 MB / -
    A8-5600K   Trinity FM2 2 (4) 3600 3900 4 MB / -
    A10-5800K   Trinity FM2 2 (4) 3800 4200 4 MB / -
    A6-5200   Kabini FT3 4 (4) 2000   2 MB / -
    Phenom II
X2-555 BE
  Callisto K10 AM3 2 (2) 3200   1 MB / 6 MB
    Phenom II
X4-960T
  Zosma K10 AM3 4 (4) 3200   2 MB / 6 MB
    Phenom II
X6-1100T
  Thuban K10 AM3 6 (6) 3300 3700 3 MB / 6 MB
    FX-8150   Bulldozer AM3+ 4 (8) 3600 4200 8 MB / 8 MB
    FX-8350   Piledriver AM3+ 4 (8) 4000 4200 8 MB / 8 MB
Intel
CPU GPU Name IGP   Socket C / M (T) Speed Turbo L2/L3
    E6400   Conroe 775 2 (2) 2133   2 MB / -
    E6550   Conroe 775 2 (2) 2333   4 MB / -
    E6700   Conroe 775 2 (2) 2667   4 MB / -
    Q9400   Yorkfield 775 4 (4) 2667   6 MB / -
    Core
i7-920
  Nehalem 1366 4 (8) 2667 2933 1 MB / 8 MB
    Core
i7-950
  Nehalem 1366 4 (8) 3067 3333 1 MB / 8 MB
    Core
i7-990X
  Westmere 1366 6 (12) 3467 3733 1.5 MB / 12 MB
    Xeon
X5690
  Westmere 1366 6 (12) 3467 3733 1.5 MB / 12 MB
    2 x Xeon
X5690
  Westmere 1366 12 (24) 3467 3733 1.5 MB / 12 MB
    Celeron
847
  Sandy
Bridge ULV
BGA1023 2 (2) 1100   0.5 MB / 2 MB
    Celeron
G465
  Sandy
Bridge
1155 1 (2) 1900   0.25 MB / 1.5 MB
    Core
i5-2500K
  Sandy
Bridge
1155 4 (4) 3300 3700 1 MB / 6 MB
    Core
i7-2600K
  Sandy
Bridge
1155 4 (8) 3400 3800 1 MB / 8 MB
    Core
i7-3930K
  Sandy
Bridge-E
2011 6 (12) 3200 3800 1.5 MB / 12 MB
    Core
i7-3960X
  Sandy
Bridge-E
2011 6 (12) 3300 3900 1.5 MB / 15 MB
    2 x Xeon
E5-2690
  Sandy
Bridge-EP
2011 16 (32) 2900 3800 2 MB / 20 MB
    4 x Xeon
E5-4650L
  Sandy
Bridge-EP
2011 32 (64) 2600 3100 2 MB / 20 MB
    Core
i3-3225
  Ivy Bridge 1155 2 (4) 3300   0.5 MB / 3 MB
    Core
i7-3770K
  Ivy Bridge 1155 4 (8) 3500 3900 1 MB / 8 MB
    Core
i7-4960X
  Ivy Bridge-E 2011 6 (12) 3600 4000 1.5 MB / 15 MB
    Core
i5-4430
  Haswell 1150 4 (4) 3000 3200 1 MB / 6 MB
    Core
i5-4670K
  Haswell 1150 4 (4) 3400 3800 1 MB / 6 MB
    Core
i7-4770K
  Haswell 1150 4 (8) 3500 3900 1 MB / 8 MB
    Core
i7-4750HQ
  Haswell +
Crystalwell
BGA1364 4 (8) 2000 3200 1 MB / 6 MB
128 MB L4
    Xeon
E3-1280 V3
  Haswell 1150 4 (8) 3600 4000 1 MB / 8 MB
    Xeon
E3-1285 V3
  Haswell 1150 4 (8) 3600 4000 1 MB / 8 MB

Note: the indication on the left hand side is whether we have tested the CPU in terms of our CPU tests or our GPU tests.  In certain circumstances GPU tests were unavailable, but the CPU tests provide interesting data points.

This is Part 2 of our Gaming CPU series, with Part 1 covering a basic range of CPUs and a Haswell update covering the i7-4770K.  For Part 2 this is primarily an Intel 4670K/Nehalem update, whereas Part 3 of our testing will focus on the AMD side.  I currently have many AMD CPUs in house (Richland, Trinity, K10) and am on the request list for a few more (Vishera, more Richland).

The GPUs

My first and foremost thanks go to both ASUS and ECS for supplying me with these GPUs for my test beds.  They have been in and out of 60+ motherboards without any issue, and will hopefully continue.  My usual scenario for updating GPUs is to flip AMD/NVIDIA every couple of generations – last time it was HD5850 to HD7970, and as such in the future we will move to a 7-series NVIDIA card or a set of Titans (which might outlive a generation or two).

ASUS HD 7970 (HD7970-3GD5)

The ASUS HD 7970 we use is the reference model at the 7970 launch, using GCN architecture, 2048 SPs at 925 MHz with 3 GB of 4.6 GHz GDDR5 memory.  We had four cards to be used in 1x, 2x, 3x and 4x configurations where possible, also using PCIe 3.0 when enabled by default, although for this update we were limited to three.

ECS GTX 580 (NGTX580-1536PI-F)

ECS is both a motherboard manufacturer and an NVIDIA card manufacturer, and while most of their VGA models are sold outside of the US, some do make it onto e-e-tailers like Newegg.  This GTX 580 is also a reference model, with 512 CUDA cores at 772 MHz and 1.5 GB of 4 GHz GDDR5 memory.  We have two cards to be used in 1x and 2x configurations at PCIe 2.0.

The Motherboards

The CPU is not always the main part of the picture for this sort of review – the motherboard is equally important as the motherboard dictates how the CPU and the GPU communicates with each other, and what the lane allocation will be.  As mentioned on the previous page, there are 20+ PCIe configurations for Z87/Z77 alone when you consider some boards are native, some use a PLX 8747 chip, others use two PLX 8747 chips, and about half of the Z87/Z77 motherboards on the market enable four PCIe 2.0 lanes from the chipset for CrossFireX use (at high latency).  We have tried to be fair and take motherboards that may have a small premium but are equipped to deal with the job.  As a result, some motherboards may also use MultiCore Turbo, which as we have detailed in the past, gives the top turbo speed of the CPU regardless of the loading.

As a result of this lane allocation business, each value in our review will be attributed to both a CPU, whether it uses MCT, and a lane allocation. 

Motherboards
Socket Chipset Motherboard PCIe
1150 Z87 ASUS Z87-Pro PCIe 3.0 x8/x8 + PCIe 2.0 x4
MSI Z87-GD65 Gaming PCIe 3.0 x8/x8/x4
GIGABYTE Z87X-UD3H PCIe 3.0 x8/x8 + PCIe 2.0 x4
MSI Z87 XPower PCIe 3.0 x8/x8/x8/x8 via PLX8747
1155 Z77 ASUS Maximus V Formula PCIe 3.0 x8/x4/x4
GIGABYTE Z77X-UP7 PCIe 3.0 x8/x8/x8/x8 via PLX8747
GIGABYTE G1.Sniper M3 PCIe 3.0 x8/x8 or x16 + PCIe 2.0 x4
2011 X79 ASRock X79 Professional PCIe 2.0 x16/x8/x8/x8
ASUS Rampage IV Extreme PCIe 3.0 x16/x8/x8/x8
Gigabyte X79-UD3 PCIe 3.0 x16/x8/x8/x8
1366 X58 GIGABYTE X58A-UD9 PCIe 2.0 x16/x16/x16/x16 via NF200
ASRock X58 Extreme3 PCIe 2.0 x16/x16 + x4
5520 EVGA SR-2 PCIe 2.0 x16/x16/x16/x16 via NF200
775 975X MSI Platinum Power Up PCIe 1.1 x8/x8
P965 ASUS Commando PCIe 1.1 x16 + x4
FM1 A75 GIGABYTE A75-UD4H PCIe 2.0 x8/x8
ASRock A75 Extreme6 PCIe 2.0 x8/x8 + x4
FM2 A85X GIGABYTE F2A85X-UP4 PCIe 2.0 x8/x8 + x4
AM3 990FX ASUS Crosshair V Formula PCIe 2.0 x16/x8/x8
BGA400 VX900 ECS VX900-I N/A
BGA1023 NM70 ECS NM70-I2 N/A
FT3 A6-5200 ASRock IMB-A180-H N/A

The Memory

Our good friends at G.Skill are putting their best foot forward in supplying us with high end kits to test.  The issue with the memory is more dependent on what the motherboard will support – in order to keep testing consistent, no overclocks were performed.  This meant that boards and BIOSes limited to a certain DRAM multiplier were set at the maximum multiplier possible.  In order to keep things fairer overall, the modules were adjusted for tighter timings.  All of this is noted in our final setup lists.

Our main memory testing kit is our trusty G.Skill 4x4 GB DDR3-2400 9-11-11 1.65 V RipjawsX kit which has been part of our motherboard testing for over twelve months.  For times when we had two systems being tested side by side, a G.Skill 4x4 GB DDR3-2400 10-12-12 1.65 V TridentX kit was also used.

For The Beast, which is one of the systems that has the issue with higher memory dividers, we pulled in a pair of tri-channel kits from X58 testing.  These are high-end kits as well, currently discontinued as they tended to stop working with too much voltage.  We have a sets of 3x2 GB OCZ Blade DDR3-2133 8-9-8 and 3x1 GB Dominator GT DDR3-2000 7-8-7 for this purpose, which we ran at 1333 6-7-6 due to motherboard limitations at stock settings.

Our Core2Duo CPUs clearly gets their own DDR2 memory for completeness.  This is a 2x2 GB kit of OCZ Platinum DDR2-666 5-5-5.

For Haswell we were offered new kits for testing, this time from Corsair and their Vengeance Pro series.  This is a 2x8 GB kit of DDR3-2400 10-12-12 1.65 V.

The Importance of Data Testing Methodology, Hardware Configurations
Comments Locked

137 Comments

View All Comments

  • Democrab - Friday, October 4, 2013 - link

    It's not really representative of most games, everyone knows it's highly CPU limited...Most games are GPU limited as proven by this, yet a lot of people seem unaware of that.
  • Spoelie - Thursday, October 3, 2013 - link

    Another choice I was considering for gaming: the i5 3350p.

    This is the cheapest i5 available on this side of the pond and still Ivy, so it allows the 4 bin overclocking. Since haswell, intel does not allow any overclocking anymore for non-K parts.

    In addition, Z77 motherboards are quite a bit cheaper than Z87 for the moment.

    So for a 30$+ cheaper than the 4430, you get 3.7/3.6/3.6/3.5ghz Ivy vs 3.2/3.0ghz Haswell.

    The platform isn't that upgradeable but with Intel moving to 2-year cadences for desktop upgrades, the performance should stay relevant for at least 4 years...
  • mrdude - Thursday, October 3, 2013 - link

    Amazing article, Ian. Thanks a ton.

    It's shocking to see how well the dual core Intel parts and the two-module AMD chips fare, even at 1440p with a single GPU. With respect to single-GPU gaming, opting to pull some $ out of the CPU/MB fund in order to buy a better GPU is certainly more advisable.

    Those who invested in the X58/1366 platform certainly got their money's worth. Frankly, even buying a secondhand 1366 platform is a good idea if it's cheaper than a new quad-core 1155/1150 + mobo. Going from an SSD running on 3GB/s to 6GB/s really isn't noticeable. I've done this twice on two separate platforms and the only difference I've seen is with respect to bootup speed.

    You also have to figure that this graph will change with the newer generation of console ports. I have an inclining that 2/4 threads might stumble a bit with some more demanding titles. We might even see AVX play a more significant role as well
  • cbrownx88 - Thursday, October 3, 2013 - link

    BF4 is gonna bump me from X58 I believe... way more CPU bound than BF3 (1920x1200@4.2ghz)
  • snouter - Wednesday, October 30, 2013 - link

    BF4 makes my 4930k work more than I thought it would.
  • BOMBOVA - Friday, October 4, 2013 - link

    i am reviving my x58 MSI board, with Syba sata 3 controller, and i really notice a difference on my long video editing files. that was my whole point of modding up. Cheers. good discussion
  • chizow - Thursday, October 3, 2013 - link

    I really appreciated what this article tried to accomplish, and I think it does shed some light on some aspects of what you were trying to test...but someone at AnandTech couldn't throw you a bone and get you a pair of higher-end GPUs to test? 580s are a bit long in the tooth to garner any meaningful results. Maybe Gigabyte could have kicked a pair of 680s to you?

    Also, it would have been nice to see some Battlefield 3 results, since it is widely touted as a title that scales extremely well with both CPU (and shows big differences with HT) and GPU, especially in MultiPlayer, and will be especially relevant in the next few months as Battlefield 4 launches.
  • dusk007 - Thursday, October 3, 2013 - link

    I find testing for CPU performance is not a strong suit of reviewers. The test has lots of data but it is missing the situations that gamers end up in which do require CPU performance.

    Starcraft 2. Just run a replay of an 8 player map at 4x-8x speed and most dual core notebooks practically break down.
    Total War set unit size to epic and run some huge battle. That is where this games is great but it drains cpu resources like crazy.

    Shooters or racing games are examples where the CPU has to do nothing but feed the GPU which is really the least CPU intensive stuff. Mulitplayer adds quite a bit of overhead but it is still not something if you play you need to worry much about your CPU.
    When testing CPU performance kick all those shooters to the curve and focus on RTS games with huge unit sizes.
    It is the minimum frames at these games that require CPU performance. The situations where it gets annoying that in the biggest battles the CPU cannot keep up. Starcraft 2 on medium runs on almost any GPU but it can bring slower CPU quickly to its limits.
  • IanCutress - Thursday, October 3, 2013 - link

    COH2 is planned for our next benchmark update to cover the RTS side. I know Rome II is also a possibility, assuming we can get a good benchmark together. As I mentioned, if possible I'd like to batch file it up so I can work on other things rather than moderate a 5 minute benchmark (x4 for repetitions for a single number, x4-8 for GPU configs to complete a CPU analysis, x25+ CPUs for scope).

    If you have any other suggestions for the 2014 update, please let me know - email address is in the article (or click on my name at the top).
    Ian
  • anubis44 - Saturday, October 5, 2013 - link

    "COH2 is planned for our next benchmark update to cover the RTS side."

    Excellent. This is one of my most-played games. In addition, I wouldn't be surprised if subsequent patches for this game didn't noticeably improve it's multi-threaded performance, so having older results will be nice to have once these patches are released in order to track the improvements.

Log in

Don't have an account? Sign up now