Apple's Swift: Visualized

Section by Anand Shimpi

Based on my findings on the previous pages, as well as some additional off-the-record data, this is what I believe Swift looks like at a high level:


Note that most of those blocks are just place holders as I don't know how they've changed from Cortex A9 to Swift, but the general design of the machine is likely what you see above. Swift moves from a 2-wide to a 3-wide machine at the front end. It remains a relatively small out-of-order core, but increases the number of execution ports from 3 in Cortex A9 to 5. Note the dedicated load/store port, which would help explain the tremendous gains in high bandwidth FP performance.

I asked Qualcomm for some additional details on Krait unfortunately they are being quite tight lipped about their architecture. Krait is somewhat similar to Swift in that it has a 3-wide front end, however it only has 4 ports to its 7 execution units. Qualcomm wouldn't give me specifics on what those 7 units were or how they were shared by those 4 ports. It's a shame that Intel will tell me just how big Haswell's integer and FP register files are 9 months before launch, but its competitors in the mobile SoC space are worried about sharing high level details of architectures that have been shipping for half a year.

Apple's Swift core is a wider machine than the Cortex A9, and seemingly on-par with Qualcomm's Krait. How does ARM's Cortex A15 compare? While the front end remans 3-wide, ARM claims a doubling of fetch bandwidth compared to Cortex A9. The A15 is also able to execute more types of instructions out of order, although admittedly we don't know Swift's capabilities in this regard. There's also a loop cache at the front end, something that both AMD and Intel have in their modern architectures (again, it's unclear whether or not Swift features something similar). ARM moves to three dedicated issue pools feeding 8 independent pipelines on the execution side. There are dedicated load and store pipelines, two integer ALU pipes, two FP/NEON pipes, one pipe for branches and one for all multiplies/divides. The Cortex A15 is simply a beast, and it should be more power hungry as a result. It remains to be seen how the first Cortex A15 based smartphone SoCs will compare to Swift/Krait in terms of power. ARM's big.LITTLE configuration was clearly designed to help mitigate the issues that the Cortex A15 architecture could pose from a power consumption standpoint. I suspect we haven't seen the end of NVIDIA's companion core either.

At a high level, it would appear that ARM's Cortex A15 is still a bigger machine than Swift. Swift instead feels like Apple's answer to Krait. The release cadence Apple is on right now almost guarantees that it will be a CPU generation behind in the first half of next year if everyone moves to Cortex A15 based designs.

Custom Code to Understand a Custom Core Apple's Swift: Pipeline Depth & Memory Latency
Comments Locked

276 Comments

View All Comments

  • medi01 - Wednesday, October 17, 2012 - link

    1) Compare ipad2's gamut, cough
    2) Check values on toms
    http://media.bestofmicro.com/3/4/331888/original/g...
    http://www.tomshardware.com/reviews/ipad-3-benchma...

    Unlike anand, toms was beyond primitive contrast/brightness benchmarking for quite a while.
  • thunng8 - Thursday, October 18, 2012 - link

    Not sure if I should trust Tom's figures compared to Anands's.

    In any case, both show the ipad3 has higher gamut, especially in sRGB.
  • steven75 - Wednesday, October 17, 2012 - link

    I think what you meant to say is that AMOLEDs win on black levels and that's about it. LCDs still win in accuracy and most importantly ability to see them in outdoor settings.
  • KoolAidMan1 - Tuesday, October 16, 2012 - link

    Not even close. Even the better Android displays like the Galaxy S3 has a PenTile display. Despite having more "pixels" it actually has fewer subpixels than the iPhone does. Unless you have bad eyesight the S3 display looks really bad in comparison, and this is before we get to even worse smartphone displays out there by HTC, etc.
  • Sufo - Tuesday, October 16, 2012 - link

    Old pentile displays were visibly jaggy on vertical lines - even my old lumia 800 exhibited this to some extent. On the GS3 tho, it is not noticeable and it has nothing to do with eyesight.

    Your comment makes it sound (to someone who has seen many different smartphone displays in person) as though you haven't spent much time with the GS3 (read: many smartphones) at all. Simply mentioning that is uses pentile subpix config, from you, sounds like regurgitated information. Not only that, but you seem to gloss over the many benefits that amoled panels bring. It's arguable that these benefits are more important than an accurate colourspace on (specifically) a mobile phone - although it is ofc entirely subjective.

    This brings me to the last tell of ignorance I noted; your mention of HTC. Have you used a One X? For those who do not like amoled panels, the display on the one x is perhaps nicer than both the gs3 and the ip5. Ofc you may say Android is not your cup of tea, and that's a perfectly justifiable stance, however it has nothing to do with display tech.

    tl;dr You sound like you don't know what you're talking about
  • KoolAidMan1 - Tuesday, October 16, 2012 - link

    I do know what I'm talking about given that I've seen many smartphones, and I've calibrated my share of desktop displays to sRGB.

    Differences in display tech aside, Android phones have never gotten color profiles right, EVER. They're almost always oversaturated, have too much contrast, and are inaccurate. Anand even posted a difference in color accuracy between several devices, and the profile for the S3 is totally what I expected.

    The S3 really doesn't look good, period, but then again there are people who argue that TN panels are just fine against IPS. I'm used to hearing nonsense on forums when it comes to display from people who don't know what to look for.
  • KoolAidMan1 - Tuesday, October 16, 2012 - link

    BTW, apologies if that came out harsh, but the difference in color and contrast accuracy between something like the S3 and a properly calibrated device is a night and day difference to me. I'm pretty sensitive to display quality though; my main desktop display at home is still an NEC and my plasma is a Pioneer Elite (RIP)
  • rocketbuddha - Tuesday, October 16, 2012 - link

    For Android you have the following 720p HD Displays

    SLCD - HTC Rezound (2011 tech)
    SLCD 2 - HTC One X, Sony HD
    HD SAMOLED Pentile - GS3, Galaxy Nexus, Moto Razr HD
    HD SAMOLED RGB - Galaxy Note II
    True IPS LCD - LG Optimus 4X, Optimus G
    Super IPS LCD -Asus Padphone, Sharp phones etc

    So you have big set of choices. If dark contrasts are important then SAMOLED is the way to go. SAMOLED RGB over SAMOLED Pentile.
    If overall color and whites are important go with SLCD2.
    IPS LCDs are the closest to the Retina Display and u have a choices there too. You can pick and choose what is good for you and have alternatives.
  • Spunjji - Thursday, October 18, 2012 - link

    The HTC One X has what is hailed to be one of the best LCD smartphone displays out there. Your claim is invalid.

    Similarly, the Galaxy Note 2 has an AMOLED display without PenTile. Sure, it's lower density, but one does not hold a 5.5" screen so close to one's face.
  • medi01 - Wednesday, October 17, 2012 - link

    ""The iPhone 5 display is better than any current Android display.""
    Why don't you go hit your dumb head with something heavy, ipad would do?

Log in

Don't have an account? Sign up now