That Darn Memory Bus

Among the entire GTX 600 family, the GTX 660 Ti’s one unique feature is its memory controller layout. NVIDIA built GK104 with 4 memory controllers, each 64 bits wide, giving the entire GPU a combined memory bus width of 256 bits. These memory controllers are tied into the ROPs and L2 cache, with each controller forming part of a ROP partition containing 8 ROPs (or rather 1 ROP unit capable of processing 8 operations), 128KB of L2 cache, and the memory controller. To disable any of those things means taking out a whole ROP partition, which is exactly what NVIDIA has done.

The impact on the ROPs and the L2 cache is rather straightforward – render operation throughput is reduced by 25% and there’s 25% less L2 cache to store data in – but the loss of the memory controller is a much tougher concept to deal with. This goes for both NVIDIA on the design end and for consumers on the usage end.

256 is a nice power-of-two number. For video cards with power-of-two memory bus widths, it’s very easy to equip them with a similarly power-of-two memory capacity such as 1GB, 2GB, or 4GB of memory. For various minor technical reasons (mostly the sanity of the engineers), GPU manufacturers like sticking to power-of-two memory busses. And while this is by no means a true design constraint in video card manufacturing, there are ramifications for skipping from it.

The biggest consequence of deviating from a power-of-two memory bus is that under normal circumstances this leads to a card’s memory capacity not lining up with the bulk of the cards on the market. To use the GTX 500 series as an example, NVIDIA had 1.5GB of memory on the GTX 580 at a time when the common Radeon HD 5870 had 1GB, giving NVIDIA a 512MB advantage. Later on however the common Radeon HD 6970 had 2GB of memory, leaving NVIDIA behind by 512MB. This also had one additional consequence for NVIDIA: they needed 12 memory chips where AMD needed 8, which generally inflates the bill of materials more than the price of higher speed memory in a narrower design does. This ended up not being a problem for the GTX 580 since 1.5GB was still plenty of memory for 2010/2011 and the high pricetag could easily absorb the BoM hit, but this is not always the case.

Because NVIDIA has disabled a ROP partition on GK104 in order to make the GTX 660 Ti, they’re dropping from a power-of-two 256bit bus to an off-size 192bit bus. Under normal circumstances this means that they’d need to either reduce the amount of memory on the card from 2GB to 1.5GB, or double it to 3GB. The former is undesirable for competitive reasons (AMD has 2GB cards below the 660 Ti and 3GB cards above) not to mention the fact that 1.5GB is too small for a $300 card in 2012. The latter on the other hand incurs the BoM hit as NVIDIA moves from 8 memory chips to 12 memory chips, a scenario that the lower margin GTX 660 Ti can’t as easily absorb, not to mention how silly it would be for a GTX 680 to have less memory than a GTX 660 Ti.

Rather than take the usual route NVIDIA is going to take their own 3rd route: put 2GB of memory on the GTX 660 Ti anyhow. By putting more memory on one controller than the other two – in effect breaking the symmetry of the memory banks – NVIDIA can have 2GB of memory attached to a 192bit memory bus. This is a technique that NVIDIA has had available to them for quite some time, but it’s also something they rarely pull out and only use it when necessary.

We were first introduced to this technique with the GTX 550 Ti in 2011, which had a similarly large 192bit memory bus. By using a mix of 2Gb and 1Gb modules, NVIDIA could outfit the card with 1GB of memory rather than the 1.5GB/768MB that a 192bit memory bus would typically dictate.

For the GTX 660 Ti in 2012 NVIDIA is once again going to use their asymmetrical memory technique in order to outfit the GTX 660 Ti with 2GB of memory on a 192bit bus, but they’re going to be implementing it slightly differently. Whereas the GTX 550 Ti mixed memory chip density in order to get 1GB out of 6 chips, the GTX 660 Ti will mix up the number of chips attached to each controller in order to get 2GB out of 8 chips. Specifically, there will be 4 chips instead of 2 attached to one of the memory controllers, while the other controllers will continue to have 2 chips. By doing it in this manner, this allows NVIDIA to use the same Hynix 2Gb chips they already use in the rest of the GTX 600 series, with the only high-level difference being the width of the bus connecting them.

Of course at a low-level it’s more complex than that. In a symmetrical design with an equal amount of RAM on each controller it’s rather easy to interleave memory operations across all of the controllers, which maximizes performance of the memory subsystem as a whole. However complete interleaving requires that kind of a symmetrical design, which means it’s not quite suitable for use on NVIDIA’s asymmetrical memory designs. Instead NVIDIA must start playing tricks. And when tricks are involved, there’s always a downside.

The best case scenario is always going to be that the entire 192bit bus is in use by interleaving a memory operation across all 3 controllers, giving the card 144GB/sec of memory bandwidth (192bit * 6GHz / 8). But that can only be done at up to 1.5GB of memory; the final 512MB of memory is attached to a single memory controller. This invokes the worst case scenario, where only 1 64-bit memory controller is in use and thereby reducing memory bandwidth to a much more modest 48GB/sec.

How NVIDIA spreads out memory accesses will have a great deal of impact on when we hit these scenarios. In the past we’ve tried to divine how NVIDIA is accomplishing this, but even with the compute capability of CUDA memory appears to be too far abstracted for us to test any specific theories. And because NVIDIA is continuing to label the internal details of their memory bus a competitive advantage, they’re unwilling to share the details of its operation with us. Thus we’re largely dealing with a black box here, one where poking and prodding doesn’t produce much in the way of meaningful results.

As with the GTX 550 Ti, all we can really say at this time is that the performance we get in our benchmarks is the performance we get. Our best guess remains that NVIDIA is interleaving the lower 1.5GB of address while pushing the last 512MB of address space into the larger memory bank, but we don’t have any hard data to back it up. For most users this shouldn’t be a problem (especially since GK104 is so wishy-washy at compute), but it remains that there’s always a downside to an asymmetrical memory design. With any luck one day we’ll find that downside and be able to better understand the GTX 660 Ti’s performance in the process.

The GeForce GTX 660 Ti Review Meet The EVGA GeForce GTX 660 Ti Superclocked
Comments Locked

313 Comments

View All Comments

  • PCTC2 - Thursday, August 16, 2012 - link

    Pricing for GTX 660 Ti cards will start at $299, continuing NVIDA’s tidy hierarchy

    NVIDIA, not NVIDA.
  • PCTC2 - Thursday, August 16, 2012 - link

    It's on page 2
  • PCTC2 - Thursday, August 16, 2012 - link

    I meant page 1. It's too early in the morning.
  • haukionkannel - Thursday, August 16, 2012 - link

    660ti is not bad, 7870 custom cooler version is very tough competitor. I allso would like to see factory overclocked version of AMD card in the same test, but all in all it seems to be close call.
    Nvidia definitely needs a cart to 200-300$. But it seems to be so that we have to wait untill 700 series for that?
  • RussianSensation - Thursday, August 16, 2012 - link

    Not even. I don't think a 7870 is a competitor since it goes for $250-260 on Newegg. The real competitor is a $320-330 HD7950.
  • MatthiasP - Thursday, August 16, 2012 - link

    I don't get why Nvidia keeps ignoring the 200$ market. With economies in Europe and the US going down, i doubt that 300$ cards will be important for the mainstream market. And even there, the 7950 seems to be the better choice.
  • Roland00Address - Thursday, August 16, 2012 - link

    They are ignoring that market for they can't make money with it right now. Right now they are facing a shortage of 28nm wafers for TSMC can't produce enough chips right now. They usually make the most money with the $100 to $250 cards for they usually make money on selling high volume cards with low to medium profit.

    But due to the shortage of 28nm wafers they have decided to only target markets that are low volume and high selling price. Because of this there majority of 28nm wafers are going for the notebook chips they are producing (the 620m to 660m all have 28nm versions). They leftover spare chips they have are going to the gtx680, gtx670, and now gtx660ti which they make a lot of profit on.

    Now there is a gt640 on the market right now, but it uses the same die as the 640m le to 660m, so any chips that can't make laptop grade due to not matching the 25w to 50w tdp will be reused in a desktop chip that can be up to 75w tdp where they will be sold at a final street cost of $100. $100 dollars for a 118mm^2 gpu is outrageous considering the 6670 has the same die size but is made on 40nm, outperforms it, uses less energy, and is cheaper.

    You won't see a gt640 with gddr5, gt650, or a gtx660 (non ti) until nvidia gets more 28nm wafers. (You also won't see nvidia making 28nm tegras until they get more wafers even if the design for tegra4/wayne was finished right now.) Right now nvidia is a victim of its own success where it is selling every 28nm product it can make, so since it can't make any more 28nm products due to its suppliers and facing a shortage it might as well maximize its profits. $300 to $500 dollar cards maximize profits, Laptop Gpus maximize profits.
  • CeriseCogburn - Sunday, August 19, 2012 - link

    " I don't get why Nvidia keeps ignoring the 200$ market. "

    560
    560Ti
    570
    460 SLI
    560 SE SLI
    550Ti SLI

    " I do get why amd fans pretend there are no nVidia cards "
  • TheJian - Monday, August 20, 2012 - link

    Not ignoring it. They can't keep up with demand at $300. Your card is coming, but not until they can get more chips (more failed $300 ones?) so they can created a $200 card.

    Sorry already debunked your 7950 being the better choice. Ignore 2560x1600 and it's not even close. That being said, if you use a 30in monitor, maybe you can argue the 2560x1600, but it's a wash at that level as far as I can see. GTX 660 TI wins many times even in Anandtech's, etc..
  • thebeastie - Thursday, August 16, 2012 - link

    I do almost all my gaming on my Sony HMZ-T1 in the standard 720P resolution, so would be great to see what FPS you get in slightly lower resolutions, especially since this is a card aimed at the lower end of the market.

    Would be great if you could start doing some 3D FPS benchmarks as well because there is a difference in performance again when you ad 3D rendering to any particular resolution.

Log in

Don't have an account? Sign up now