3D Movement Algorithm Test

The algorithms in 3DPM employ either uniform random number generation or normal distribution random number generation, and vary in various amounts of trigonometric operations, conditional statements, generation and rejection, fused operations, etc.  The benchmark runs through six algorithms for a specified number of particles and steps, and calculates the speed of each algorithm, then sums them all for a final score.  This is an example of a real world situation that a computational scientist may find themselves in, rather than a pure synthetic benchmark.  The benchmark is also parallel between particles simulated, and we test the single thread performance as well as the multi-threaded performance.

3D Particle Movement - Single Threaded

In our single threaded test, the improved IPC from Ivy Bridge is clear to see, with every board able to beat the i7-3960X results.

3D Particle Movement - MultiThreaded

Now we see some real differences to the boards - as the ASUS has MultiCore Enhancement, which boosts the CPU to full turbo mode under multithreaded mode, it has a clear advantage over the other boards in the test.  Surprisingly the Gigabyte board also did the same, despite clear settings in the BIOS to enforce multiplier ratios at core loads.

WinRAR x64 3.93

With 64-bit WinRAR, we compress the set of files used in the USB speed tests. WinRAR x64 3.93 attempts to use multithreading when possible.

WinRAR x64 3.93

Due to the mixed threaded nature of the WinRar test, this is all about how the board reacts to different load levels.  The four core Ivy chips are on par with the six core Sandy-E chips, but the ASRock Z77 seems to lag behind.

FastStone Image Viewer 4.2

FastStone Image Viewer is a free piece of software I have been using for quite a few years now.  It allows quick viewing of flat images, as well as resizing, changing color depth, adding simple text or simple filters.  It also has a bulk image conversion tool, which we use here.  The software currently operates only in single-thread mode, which should change in later versions of the software.  For this test, we convert a series of 170 files, of various resolutions, dimensions and types (of a total size of 163MB), all to the .gif format of 640x480 dimensions.

FastStone Image Viewer 4.2

The single thread speed is key for FastStone, where the IPC for Ivy really gets to play.

Xilisoft Video Converter

With XVC, users can convert any type of normal video to any compatible format for smartphones, tablets and other devices.  By default, it uses all available threads on the system, and in the presence of appropriate graphics cards, can utilize CUDA for NVIDIA GPUs as well as AMD APP for AMD GPUs.  For this test, we use a set of 32 HD videos, each lasting 30 seconds, and convert them from 1080p to an iPod H.264 video format using just the CPU.  The time taken to convert these videos gives us our result.

Xilisoft Media Converter

As one of our new tests, Xilisoft can show how motherboards treat a fully multi-threaded load with optimised coding.  Again, the ASUS and Gigabyte win out here.

x264 HD Benchmark

The x264 HD Benchmark uses a common HD encoding tool to process an HD MPEG2 source at 1280x720 at 3963 Kbps.  This test represents a standardized result which can be compared across other reviews, and is dependant on both CPU power and memory speed.  The benchmark performs a 2-pass encode, and the results shown are the average of each pass performed four times.

x264 Pass 1

x264 Pass 2

Similarly to Xilisoft, the way different boards react to a full multithreaded load are on display.  Score another one for ASUS and Gigabyte.

System Benchmarks Gaming Benchmarks
Comments Locked

117 Comments

View All Comments

  • DarkRogue - Tuesday, May 8, 2012 - link

    First off, thank you for the review.

    I am a bit bummed that the UD5H and the Z77 Deluxe were not reviewed, since those were the two I was looking at. Especially since the UD5H can be had for under $200.

    Anyway, the voltage ripple/stability charts were quite interesting for me.
    But my main concern lies with the Gigabyte's chart. It looks good... but in my eyes, TOO good. It's too perfectly straight. On one hand, I thought, "Wow, this board has awesome VRM or something."

    On the other hand, it made me suspicious about why it was so stable. I have to ask, is it measuring the correct voltage?

    The reason is because I had a similar finding when I was looking at the vcore requried to OC an IVB CPU (or any CPU, really) on the new Z77 mobos.
    Per my thread here: http://forums.anandtech.com/showthread.php?t=22417...

    We found that Gigabyte mobos were incorrectly reporting its VTT voltage as the vCore, which resulted in "vcore" readings in CPU-Z and other programs reporting the same, or very similar, 1.0xx voltages regardless of what the CPU OC'd to.

    I hope to be able to get some clarification on this.

    Only other suggestion I have is to really test more of the features of each motherboard. (mSATA, firewire, audio, etc; how do they compare with other chipsets, how are their drivers, etc..)
    Thank you, and keep up the good work!
  • IanCutress - Tuesday, May 8, 2012 - link

    Hi DarkRogue,

    I have the Deluxe on my test bed right now, so keep your eyes peeled for when I finish the review.

    Regarding the voltage reading charts, it merely reads the OS reported voltage. This is loosely a smoothing of what ripple actually happens on board. After consideration, it only serves to show LLC on board, and how the board reacts to requested load by the processor. It's fairly easy for a manufacturer to override this to make sure only a straight line is reported. But, if it is a messy line, then there could be a problem (e.g. check my 990FX review a little while ago).

    I'd love the kit to test more features on the boards (mSATA etc), if you've got any kit spare! :) Though keep in mind that each test can't take 2 hrs, or we would end up with 1 board a month reviewed (as we do this part time)! I'm open to suggestions regarding tests if anyone has a good one with a simple output I can report and analyse.

    Ian
  • DarkRogue - Tuesday, May 8, 2012 - link

    Thank you for your response, Ian!

    I wish I had the funds to send in spare items, though. Unfortunately, I'm not quite rich enough, haha. We'll have to be bound by the generosity of the various vendors to this site.

    As far as tests go, I imagine some people would be interested in a quick RMAA test of the various audio chipsets. It's of no concern to me, since I insist onboard solutions are never going to be as good as a dedicated external DAC+amp, but it should be good for a lot of people.

    I'd also be interested in how the eSATA and Firewire performs, as I'm of the camp that says anything firewire related that isn't Texas Instruments is not worthwhile. The eSATA, mainly it's to see if there are any quirks with the drivers from each manufacturer allowing hotswap properly or not, and whether it causes DPC latency issues. My friend's ASUS board was plagued with problems related to eSATA not allowing him to eject drives, BSOD'ing on resuming from sleep, causing massive DPC latency when a drive was connected, etc. It's these little things that really make or break the experience of a board.

    I'd also like to see how well the fan controls are on each motherboard. ASUS' Fan Xpert 2 really drew me in, as it seems no one else can match the level of customization for fans. I dug a bit and found out that Gigabyte's boards not only cannot do this, but it even struggles to stay consistent between its various headers. (One header runs straight +12v no matter what, while the others make the fans spin at different speeds with the same settings.)

    ANYWAY, back to the issue at hand - Gigabyte's voltage readings.
    As I found in my thread linked above, Gigabyte appears to be reporting the wrong voltage, for some unknown reason. This to me seems to invalidate the test result for the Gigabyte board, because it's incomparable to the others.

    I know that the purpose of the test is to test for variation in the voltage to the CPU, not necessarily the exact ripples, but the VTT supplies voltage to a completely different segment than the vcore, unless I'm mistaken. I wouldn't think that the voltage supplied toward the IMC would vary as much when the CPU ramps up and down.

    Is there a way to force that program to probe a specific/different voltage reading, or have you already done this and the chart actually does represent Gigabyte's handling of vcore voltage? I wasn't able to figure that out from the article.

    Thank you again!
  • UltraWide - Tuesday, May 8, 2012 - link

    Thank you so much for covering the fan control features on each board! I truly appreciate this as it is often left out in other reviews.

    Keep up the great work!
  • AeroRob - Tuesday, May 8, 2012 - link

    I don't know about anyone else, but I'm really sick of seeing VGA and PS/2 ports wasting space on new motherboads.

    I know some gamers might think that PS/2 does the job better than USB, and I can appreciate that, but VGA? Who even uses VGA connections anymore? They should be avoided like the plague.

    And even if you do insist on using a VGA connection, what's the point of putting a DVI-D connector and a VGA together? Chances are you won't be using both, so just make it a DVI-I connector and throw in one of the cheap DVI>VGA adapters, and use the newly freed up space for a connector that isn't an ancient piece of garbage. Let's see HDMI or DP up there. Move things around so you can perhaps throw an eSATA connector on the back, or more USB ports--you can never have too many USB ports!
  • Paapaa125 - Wednesday, May 9, 2012 - link

    PS/2 has one single thing that makes it superior to USB: you can turn your computer on by clicking space bar on a PS/2 keyboard or clicking mouse button on a PS/2 mouse. USB does not have this feature which is a big problem if your computer case is not easily reachable.

    Agree about VGA ports. Nobody uses them anymore. Nobody.
  • AeroRob - Wednesday, May 9, 2012 - link

    As I understand it, gamers feel there's an issue with USB's polling rate, and prefer PS/2 for that reason.

    As for turning on your computer, I never heard about that. I rarely shut my computer completely off, and my wireless USB keyboard can wake it up from sleep just fine. Hell, my computer's so sensitive to any change, just flipping my monitor back on wakes it up (probably due to the built-in USB hub).
  • mcquade181 - Thursday, May 10, 2012 - link

    I know whole organizations that still use VGA, and there are tons of KVM switch boxes in development and testing centres everywhere that only support VGA. Yes I know you can get HDMI and DVI KVM's but most places won't have them yet.
    I still use VGA occasionally and would be annoyed if it wasn't there.
  • Paapaa125 - Friday, May 11, 2012 - link

    And how many of those organizations are switching to Z77 boards and still keeping their VGA?
  • Ramon Zarat - Tuesday, May 8, 2012 - link

    The latest AXTU version does not include XFastRAM anymore. XFastRAM is a stand alone utility now. Also, XFastRAM is much more than a 32bit 4GB RAM limitation extender. It's in fact a RAM disk on steroid, valid for both 32 and 64bit system. It can do the following:

    1- "Recycle" unused memory beyond 4GB on a 32bit OS into a RAM disk. A RAM disk of up to 32GB can be created on a 32bit OS.

    2- RAM disk of up to 8GB on a 64bit OS. Asrock is working on extending that limit on 64bit OS.

    3- Can choose any available driver letter to assign to your RAM disk

    4- Use part of the RAM disk as a Readyboost drive to accelerate your magnetic boot drive!

    5- Easy transfer of either or both the "user" and "system" temp file to RAM disk. No fooling around with Windows configuration.

    6- Easy transfer of IE and Firefox cache to RAM disk. XFastRAM take care of everything straight from its interface.

    7- Easy transfer of the page file to RAM disk. Again, directly from XFastRAM interface.

    8- Possibility to save the RAM disk to hard drive before shutting the PC down.

    It's fast (10 000MB/s with CrystalDiskMark on a 2500K @ 4.7 and 8GB of 1866 RAM) , it's free, it's amazingly flexible and can both accelerate your PC and prevent premature wear on your SSD by redirecting a lots of small writes to the temp folders and web cache! You can apparently gain 5X performance in some Photoshop operations when you configure it so use the RAM disk as the temp folder!

Log in

Don't have an account? Sign up now