Conclusions

Our conclusion about the Xeon E5-2690 2.9 GHz is short and simple: it is the fastest server CPU you can get in a reasonably priced server and it blows the competition and the previous Xeon generation away. If performance is your first and foremost priority, this is the CPU to get. It consumes a lot of power if you push it to its limits, but make no mistake: this beast sips little energy when running at low and medium loads. The price tag is the only real disadvantage. In many cases this pricetag will be dwarfed by other IT costs. It is simply a top notch processor, no doubt about it.

For those that prioritize performance/watt or performance/dollar, we've summarized our findings in a comparison table. We made 3 columns for easy comparison:

  • In the first column, we compare Intel's newest generation with the previous one. We compare the CPUs with midrange TDP (95W).
  • In the second column, we compare Intel's and AMD's midrange offerings.
  • In the third column we compare CPUs with a similar pricepoint as we believe that a six-core E5-2660 will be very close to the performance of 2.3 GHz Xeon E5-2630.

We also group our benchmarks in different software groups and indicate the importance of this software group in the server market (we motivated this here).

Software: Importance in the market Xeon E5-2660
vs Xeon X5650
Xeon E5-2660
vs Opteron 6276
Xeon E5-2660 6C
vs Opteron 6276

Virtualisation: 20-50%

     
ESXi + Linux

+40%

+40%

+7%

OLAP Databases: 10-15%

 

 

 

MS SQL Server 2008 R2

+30%

+34%

+8%

HPC: 5-7%

 

 

 

LS Dyna

+77%

+26%

+15%

Rendering software: 2-3%

 

 

 

Cinebench

+50%

+37%

+9%

3DS Max 2012 (iRay)

2%

+12%

+18%

Blender

+9%

+32%

+26%

 

 

 

 

Other: N/A

 

 

 

Encryption/Decryption AES

+42/41%

+38/32%

+8/4%

Encryption/Decryption Twofish/Serpent

+37/49%

+5/2%

-19%/-19%

Compression/decompression

+35/37%

+105/13%

+66/-11%

It is pretty amazing that with the exception of two rendering applications with relatively mediocre scaling, the new Xeon is able to outperform the previous Xeons by a large margin (from 30% up to 60%) in a wide range of applications. All that performance comes with lower energy consumption and a very fast I/O interface. Whether you want high performance per dollar or performance per watt, the Xeon E5-2660 is simply a home run. End of story.

For those who are more price sensitive, the Xeon E5-2630 costs less than the Opteron 6276 and performs (very likely) better in every real world situation we could test.

And what about the Opteron? Unless the actual Xeon-E5 servers are much more expensive than expected, it looks like it will be hard to recommend the current Opteron 6200. However if Xeon E5 servers end up being quite a bit more expensive than similar Xeon 5600 servers, the Opteron 6200 might still have a chance as a low end virtualization server. After all, quite a few virtualization servers are bottlenecked by memory capacity and not by raw processing power. The Opteron can then leverage the fact that it can offer the same memory capacity at a lower price point.

The Opteron might also have a role in the low end, price sensitive HPC market, where it still performs very well. It won't have much of chance in the high end clustered one as Intel has the faster and more power efficient PCIe interface.

Ultimately, our hope for stiffer competion lies with the newest Opteron "Abu Dhabi" which is based upon the "Piledriver" core. The new Opteron was after all made to operate at 3 GHz and higher clockspeeds as opposed to the meager 2.3/2.6 GHz we have seen so far. Apparantely AMD will not only be able to boost IPC a bit (by 10% or more) but they may also significantly boost the clockspeed as we have learned from this ISSC paper: "a AMD’s 4+ GHz x86-64 core code-named “Piledriver” employs resonant clocking to reduce clock distribution power up to 24% while maintaining a low clock-skew target."

This should allow AMD to get higher clockspeeds within the same power envelope. Until then, it is the Xeon E5-2600 that rules the server world.

Compression and Encryption
Comments Locked

81 Comments

View All Comments

  • BSMonitor - Tuesday, March 6, 2012 - link

    My question as well.

    What is the Intel roadmap for Ivy Bridge in this arena. Would be the same timeframe as IVB-E I would guess.

    Wondering if my Intel dividends will pile up enough for me to afford one! Haha
  • devdeepc - Friday, September 2, 2016 - link

    Based on the paper specs, AMD's 6276, 6274 and Intel's 2640 and 2630 are in a neck-and-neck race.
  • fredisdead - Saturday, April 7, 2012 - link

    From the 'article' .....

    'The Opteron might also have a role in the low end, price sensitive HPC market, where it still performs very well. It won't have much of chance in the high end clustered one as Intel has the faster and more power efficient PCIe interface'

    Well, if that's the case, why exactly would AMD be scoring so many design wins with Interlagos. Including this one ...

    http://www.pcmag.com/article2/0,2817,2394515,00.as...

    http://www.eweek.com/c/a/IT-Infrastructure/Cray-Ti...

    U think those guys at Cray were going for low performance ? In fact, seems like AMD has being rather cleaning up in the HPC market since the arrival of Interlagos. And the markets have picked up on it, AMD stock is thru the roof since the start of the year. Or just see how many Intel processors occupy the the top 10 supercomputers on the planet. Nuff said ...
  • iwod - Tuesday, March 6, 2012 - link

    And not find a single comment on how and why "making this CPU quite a challenge, even for Intel."

    In my view It seems Intel is now using Server Market and Atom / SoC for their 32nm capacity when ever they introduce a new node in consumer products.
  • extide - Tuesday, March 6, 2012 - link

    A large part of Intel's long-term strategies include keeping the fabs occupied.

    Latest gen fabs (currently 22nm) produce bleeding edge cpu's, usually in the consumer space

    One gen back (32nm) produces server/workstation/mobile cpus

    two gens back (45nm) produces other things like chipsets, and possibly itanium chips

    even three gens back (65nm) probably still exists in some places making some chipsets as well.

    Their goal is to as much use as possible from their investment into building the fabs themselves.
  • Kevin G - Tuesday, March 6, 2012 - link

    65 nm is still used for Itanium, though the Poulson chip is due sometime this year made on a 32 nm process. If you want to compare die sizes, the 65 nm Tukwila design is 699 mm^2 in size.

    The main reason why 32 nm Sandybridge-E has been released so close to the release of 22 nm Ivy Bridge chips is that the initial Ivy Bridge chips are consumer centric. Intel performs additional testing on its server centric designs. This is particularly true as Sandybridge-E is not just replacing the dual socket Westmere-EP chips but some of the quad socket Westmere-EX market. RAS demands jump from going from dual to quad socket and that is reflected in additional testing. Implementing PCI-E 3.0 and QPI 1.1 also contributed to the time for additional testing.

    Though you are correct that Intel does uses its older process nodes for various chipsets and IO chips. However, as Intel is marching toward SoC designs, the actual utility of keeping these older process nodes in action is decreasing.
  • meloz - Tuesday, March 6, 2012 - link

    >And not find a single comment on how and why "making this CPU quite a challenge, even for Intel."

    Because it is such a massive die? 416 mm²? Large dies usually have a lower yield, and Intel's 32 nm process is still cutting edge (if only for a few more weeks, heh).

    Look at how TSMC, Global Flounderings et al are struggling. An impressive achievement by Intel.
  • MrSpadge - Tuesday, March 6, 2012 - link

    A significant amount of functionality has been added to the SB cores, and Intel can't afford mistakes in such CPUs.
  • BSMonitor - Tuesday, March 6, 2012 - link

    More than that though, the SNB-E, Xeon E cores are not duplicates of the SNB desktop cores.

    Look at Anand's die shot of SNB-E, vs die shot of SNB. The CPU cores, L3 cache, controllers, are arranged completely different. Which makes sense as SNB-E doesn't have to deal with 40% of the die being GPU transistors. So, what we have now with Intel is two completely different dies between Xeon/SNB-E and Core. The individual CPU cores are the same, but the rest of the die is completely different.

    SNB-E:
    http://www.anandtech.com/show/5091/intel-core-i7-3...

    SNB:
    http://www.anandtech.com/show/4083/the-sandy-bridg...
  • cynic783 - Tuesday, March 6, 2012 - link

    omg these benches are so biased it's not even funny. everyone knows amd offers clock-for-clock more punch than intel and lower power as well

Log in

Don't have an account? Sign up now