The following table summarizes the abundant data I gathered across the 72 (and more...keep reading) tests, from one node combination to another, from one data-flow direction to another within a given node combination, and across the three adapter technologies that comprised this study:

Average Bandwidth Testing Results (Mbps)
  NETGEAR HomePlug AV1 Sigma Designs HomePlug AV2 NETGEAR IEEE 19013
Nodes TCP (single-stream) TCP (quad-stream) TCP (single-stream) TCP (quad-stream) TCP (single-stream) TCP (quad-stream)
1->2 36.97 36.881 26.554 37.048 27.037 26.231
2->1 36.314 37.636 28.5 31.77 25.772 26.487
1->3 32.548 32.857 31.72 39.69 14.335 12.106
3->1 32.419 33.676 29.815 36.546 15.09 16.486
1->4 30.488 31.976 33.778 43.918 13.621 14.57
4->1 35.801 36.795 33.952 39.076 21.544 14.225
2->3 48.379 52.413 40.515 47.587 29.931 31.376
3->2 50.665 54.364 38.632 45.338 31.929 33.602
2->4 52.083 56.974 40.29 48.872 53.199 42.231
4->2 53.717 56.584 41.068 48.879 37.215 36.953
3->4 48.054 53.037 34.547 50.343 35.632 33.381
4->3 51.793 51.576 41.762 50.695 30.846 30.662

Nodes

  1. Dining room
  2. Living room
  3. Bedroom
  4. "Mud room"

Notes

  1. Firmware v0.2.0.5NA
  2. Firmware v1.2.15
  3. Firmware v0.2.0.9NA

Keep in mind that the table only shows only the average throughput across each test’s duration. Each single-number test summary omits per-stream average results for four-stream tests; the minimum and maximum per-stream and aggregate transfer rates across the test runtime; the overall transfer-rate pattern spread; and the measured minimum, maximum, average, and spread latency. The IxChariot reports embed all of this information and more. You can download a folder-delimited ZIP archive of all 72 report suites, in both native Ixia TST and exported TXT, PDF and HTML-plus-GIF formats, here.

In scanning over the data, you'll perhaps first notice that powerline network node 1 is the obvious bandwidth-compromised location. It's nearby the Dell XPS M1330, which acts as Media Center server for my Xbox 360s (acting as Media Center Extenders). Right now, I use a dedicated wide-channel 5 GHz 802.11n link to stream data from the laptop to my router. I'd originally thought that I could perhaps replace it with a powerline connection, thereby enabling me to (for example) simultaneously send multiple TV channels' worth of data to different game consoles. Guess not.

The Netgear XAV2001 (Qualcomm HomePlug AV) results closely align with those I've obtained in past studies using a number of different measurement schemes, giving me confidence both in this study's numbers and in my overall testing methodology. Note that the four-stream variant of each node-to-node TCP test delivered little to no incremental measured bandwidth versus the single-stream base case alternative.

That's not the case with the Sigma Designs-based HomePlug AV adapters. Although the single-stream results were respectable, they only exceeded those of the INT6400-based adapters in one of twelve cases. However, unlike with the INT6400-derived devices, the Motorola-branded HomePlug AV adapters showed consistent and significant speed improvements when I simultaneously sent four TCP streams through them, beating out the XAV2001s in five of twelve testing scenarios. Keep in mind, in comparing the Sigma Designs results with the others, that you're matching up a three-adapter Sigma Design topology against a five-adapter Netgear alternative...although in all three cases, only three adapters were in active use at any point in time (two Endpoint units, plus one at the router).

Finally, turn your attention to the AR7400-based Netgear XAV5001 IEEE 1901 adapters...and to the most baffling aspect of this study. In past testing, admittedly using different benchmark utilities and hardware configurations, the XAV5001s had exhibited consistent node combination-to-combination performance improvements over the XAV2001s, although the magnitude of the improvement varied depending on which specific node combination was being measured at the time. This time, on the other hand, the XAV5001s consistently undershot both adapter alternatives, and the XAV5001 four-stream testing setup even undershot the single-stream variant in a couple of cases.

I was so baffled by the outcome that I re-ran the XAV5001 tests several days later, obtaining a near-identical results set. I frankly don't know for sure what's going on, although I've seen similar discrepancies at other sites that have compared IEEE 1901 adapters to their HomePlug AV precursors. The last time I substantially tested the XAV5001 adapters, they were running the same firmware release as now, but it was springtime. Perhaps the overall power grid noise level is higher in late summer, or perhaps the higher ambient temperature caused a performance degradation; I've encountered similar scenarios in testing older-generation powerline technologies. Keep in mind, too, that the AR7400 is Qualcomm's first-generation IEEE 1901 chipset, versus the INT6400 third-generation HomePlug AV chipset, and that the associated AR7400 firmware is also comparatively immature.

One other Qualcomm-vs-Sigma Designs discrepancy bears mentioning. Check out these representative one- and four-stream testing bandwidth profiles from the Qualcomm AR7400 testing:

 

Now check out their Sigma Designs CG2110 counterparts:

Note that in the Qualcomm cases, bandwidth initially spiked high and then quickly tailed off to a steady-state value; the converse was the case with the Sigma Designs-based adapters.

Operational Observations UDP Testing Frustrations
Comments Locked

53 Comments

View All Comments

  • fkoehler - Saturday, September 3, 2011 - link


    Seriously, as a networking guy who's been following this since well before 2004, this has to be one of the worst article I've ever read on the subject.
    And equally as annoying is that its on AT and the goofy tone and copy/pasta of chunks of text.
    All you appear to have done is repeat rote basics regarding powerline networking, most of which has been written before numerous times.
    I fail to see anything useful, new, or even interesting in this article.

    Hey, maybe AT can pay me to write about Cisco IOS or Routers, and I'll paste large swathes of text into my article just to dumbfound the readers and appear techy/edgy....

    I wouldn't call you a Luddite, just a p-ss poor writer with obvious feelings of technical superiority. Considering your stupid comment re: Ethernet, I have the same level of faith in anything else you comment on.

    The majority of this article could have been compressed into 2-3 Introductory paragraphs. Everyone even moderately interested in the technology has known there are only 2 players in this market.

    I guess AT is doing the old TomsHardware thing and going for rehashed quantity over quality.
  • EddieCFS - Friday, November 9, 2012 - link

    Problem : Boutique Hotel 4 floors,10 rooms per floor . No additional cabling allowed .
    Is it possible to have four networks ; one per floor ? . How do you "isolate " network from each other if sharing a common CB ?. ( Requirement is up to 10Mbps per room )
  • Maxx11 - Sunday, January 20, 2013 - link

    Hello ,

    I know this thread is kinda old, but I will ask regardless...
    I have two older Panasonic HD-PLC PA100 units. Are these new units you tested in article better -- is it worth upgrade ? Are there even better units available now ?

    Also, are these tested units better than Panasonic HD-PLC when used between breakers with different phase power ? (my experience has been they are almost useless in this situation, which may account for more than half the normal cases)

    Thanks for any info...

    Maxx

Log in

Don't have an account? Sign up now