Sandy Bridge: Bridging the Mobile Gap

We’ve been anxiously awaiting Sandy Bridge for a while, as the old Clarksfield processor was good for mobile performance but awful when it came to battery life. Take a power hungry CPU and pair it up with a discrete GPU that would usually require at least 5W and you get what we’ve lamented in the past year or so: battery life that usually maxed out at 2.5 hours doing nothing, and plummeted to as little as 40 minutes under a moderate load.

Sandy Bridge fixes that problem, and it fixes it in a major way. Not only do we get 50 to 100% better performance than the previous generation high-end Intel mobile chips, but we also get more than double the integrated graphics performance and battery life in most situations should be similar to Arrandale, if not better. And that’s looking at the quad-core offerings!

When dual-core and LV/ULV Sandy Bridge processors start arriving next month, we’ll get all of the benefits of the Sandy Bridge architecture with the potential for even lower power requirements. It’s not too hard to imagine the ULV Sandy Bridge chips reaching Atom levels of battery life under moderate loads, and performance will probably be almost an order of magnitude better than Atom. Sure, you’ll pay $700+ for SNB laptops versus $300 netbooks, but at least you’ll be able to do everything you could want of a modern PC. In summary, then, Sandy Bridge improves laptop and notebook performance to the point where a large number of users could easily forget about desktops altogether; besides, you can always plug your notebook into a keyboard, mouse, and display if needed. About the only thing desktop still do substantially better is gaming, and that’s largely due to the use of 300W GPUs.

All this raises a big question: what can AMD do to compete? The best we’ve seen from AMD has been in the ultraportable/netbook space, where their current Nile platform offers substantially better than Atom performance in a relatively small form factor, with a price that’s only slightly higher. The problem is that Intel already has parts that can easily compete in the same segment—ULV Arrandale and even standard Arrandale offer somewhat better graphics performance than HD 4225 (barring driver compatibility issues) with better battery life and substantially higher CPU performance—and it’s not like most people play demanding games on such laptops anyway. It’s a triple threat that leaves AMD only one choice: lower prices. If Intel were to drop pricing on their ULV parts, they could remove any reason to consider AMD mobile CPUs right now, but so far Intel hasn’t shown an interest in doing so.

In the near future, we’ll see AMD’s Brazos platform come out, and that should help on the low end. We expect better than Atom performance with substantially better graphics, but prices look to be about 50% higher than basic Atom netbooks/nettops and you’ll still have substantially faster laptops available for just a bit more. I’m not sure DX11 capable graphics even matter until you get CPUs at least two or three times more powerful than Atom (and probably at least twice as fast as the netbook Brazos chips), but we’ll see where Intel chooses to compete soon enough. Most likely, they’ll continue to let AMD have a piece of the sub-$500 laptop market, as that’s not where they make money.

The lucrative laptops are going to be in the $750+ range, and Intel already has a stranglehold on that market. Arrandale provides faster performance than anything AMD is currently shipping, while also beating AMD in battery life. Pair Arrandale with an NVIDIA Optimus GPU and you also cover the graphics side of things, all while still keeping prices under $1000. Now it looks like Intel is ready to bump performance up another 25% at least (estimating dual-core SNB performance), and power saving features likewise improve. AMD should have some new offerings in the next six months, e.g. Llano, but Llano is supposed to be a combination of Fusion graphics with a current generation CPU, with the Fusion plus Bulldozer coming later.

We have no doubt that AMD can do graphics better than the current Intel IGP, but at some point you reach the stage where you need a faster CPU to keep the graphics fed. Sandy Bridge has now pushed CPU performance up to the point where we can use much faster GPUs, but most of those fast GPUs also tend to suck down power like a black hole. Optimus means we can get NVIDIA’s 400M (and future parts) and still maintain good battery life, but gaming and battery life at the same time remains a pipe dream. Maybe AMD’s Fusion will be a bit more balanced towards overall computing.

I guess what I’m really curious to see is if AMD, Intel, NVIDIA, or anyone else can ever give us 10 hours of mobile gaming. Then we can start walking around jacked into the Matrix [Ed: that would be the William Gibson Matrix/Cyberspace, not the Keanu Reaves movies, though I suppose both ideas work] and forget about the real world! With Intel now using 32nm process technology on their IGP and 22nm coming in late 2011, we could actually begin seeing a doubling of IGP performance every ~18 months without increasing power requirements, and at some point we stop needing much more than that. Put it another way: Intel’s HD Graphics 3000 with 114M transistors is now providing about the same level of performance as the PS3 and Xbox 360 consoles, and you pretty much get that “free” with any non-Atom CPU going forward. Maybe the next consoles won’t even need to use anything beyond AMD/Intel’s current integrated solutions?

However you want to look at things, 2011 is shaping up to be a big year for mobility. We bumped our laptop reviews up from about 25 articles in 2009 to a whopping 100 articles in 2010, not to mention adding smartphones into the mix. It’s little surprise that laptop sells have eclipsed desktops, and that trend will only continue. While the Sandy Bridge notebook is still a notebook, you start thinking ten years down the road and the possibilities are amazing. iPhone and Android devices are now doing Xbox visuals in your hand, and Xbox 360 isn’t far off. Ten years from now, we’ll probably see Sandy Bridge performance (or better) in a smartphone that sucks milliwatts.

SNB marks the first salvo in the mobile wars of 2011, but there’s plenty more to come. Intel’s cards are now on the table; how will AMD and NVIDIA respond? Maybe there’s a wild card or two hiding in someone’s sleeve that we didn’t expect. Regardless, we’ll be waiting to see where the actual notebooks go with the new hardware, and CES should provide a slew of new product announcements over the coming week. Stay tuned!

What About Heat, Noise, and the LCD?
Comments Locked

66 Comments

View All Comments

  • seamusmc - Friday, January 7, 2011 - link

    I'm a notebook noob, up till now I've avoided them as much as I could. I have evaluated them over the years and have a pretty good dell precision 4500 at work, however, I had to build a desktop because the laptop, as provided, just doesn't cut it. With a SSD and 8 GB of ram it would probably suffice but I run a lot of Virtual Machines for testing.

    Anyhoo, enough of my background: I am very interested in the Sandy Bridge line specifically the retail chips, 2720 and 2820.

    However all I'm seeing announced from the OEM's are 2630 based solutions. Are the OEM's going to have an option to upgrade to the retail chips? Are the 2720 and 2820 going to be available any time soon or is it just the 2630 that will have broad availability?

    Who will have the retail chips available?
  • GullLars - Saturday, January 8, 2011 - link

    This review unit came with an Intel SSD, which probably made a huge impact on general usage, but can we expect SSD boot drives for most Sandy Bridge laptops?
    If i were Intel, i'd make a branding program where Sandy + Intel SSD (310, G2, or newer) gave a fancy sticker for marketers to drool over, guaranteeing smooth and snappy operation without hiccups from spinning platter IOs.
  • IntoGraphics - Monday, January 17, 2011 - link

    "We might get some of the above in OEM systems sent for review, and if so it will be interesting to see how much of an impact the trimmed clock speeds have on overall performance."

    Looking forward for this to happen. Very important to know for me. Because I will be using Adobe Illustrator CS4, Cinema 4D R12 Prime, and Unity 3D.
    I hope that the performance impact between an i7-2720QM and a i7-2820QM, is as minimal as it was between the i7-740QM and i7-840QM.

    It's going to be a toss up between the SB Dell XPS 17 and the SB HP Envy 17 for me, combined with a Dell or HP 30" monitor. Just too bad that both notebooks will not offer 1920x1200 resolution.
  • psiboy - Wednesday, January 19, 2011 - link

    Your gaming benchmark is a joke! Anyone who has a radeon 5650m in there laptop isn't going to set game setting to "Ultra Low" a good mid range setting would have been more realistic and probably playable... but the Intel HD graphics on Sandy Bridge would not have looked so good then.... "Lies, damned lies and statistics!" all manipulated so the uneducated are taken in to think they can game on Intel IGP's....

    BTW: Dirt 2 looks like crap on Ultra Low...
  • katleo123 - Tuesday, February 1, 2011 - link

    It works on new motherboards based on Intel’s forthcoming 6-series chipsets
    Visit http://www.techreign.com/2010/12/intels-sandy-brid...
  • welcomesorrow - Friday, June 10, 2011 - link

    Hi,

    I would mostly appreciate your suggestions regarding the bottleneck of overclocked QSV.

    I have Core i5-2400s on Intel's DH67BL (H67) mother and have been using Media Espresso 6.5 to transcode ts files (MPEG-2) into H.264 by QSV. DH67BL allows me to overclock the graphics core from its default 1.1GHz to 2GHz. I observe linear shortening of transcoding time from 43 seconds/GB (1.1GHz) to 35 seconds/GB (1.6GHz), but beyond that there is no further improvement. Thus, it is expected to be transcoding in 30 seconds/GB at 2GHz but in reality it takes 35 seconds/GB.

    QSV encoding in Media Espresso 6.5 is already ultrafast, and first I thought it might be hitting the I/O bandwidth of HDD, but it was not the case because SSD or even RAMDISK did not improve the situation.

    Any idea about what is becoming the bottleneck of overclocked QSV? My guess is that it has something to do with either Sandy Bridge's internal hardware (such as data transfer) or Media Espresso's logic or both.

Log in

Don't have an account? Sign up now