Power Consumption

The Magny-Cours Opteron arrived one week ago, which is barely enough time to do virtualization benchmarking. So we have to postpone extensive power testing to a later date. The Opteron 6174 came in a desktop reference system which is in no way comparable to our Xeon X5670 1U server. We do have an six-core Opteron based system which is very similar to the Opteron 6174 reference system: the motherboard is also equipped with the new AMD SR5670 chipset and housed in the same desktop system. We can tell you that the idle power of the Opteron 6174 is a few watts lower than the six-core Opteron 2435. Both throttle back to 800 MHz, but the Opteron 6100 series gets a real C1E mode.

C1E mode can only be entered if all CPUs are idle. In a dual socket system, both CPUs enter C1E or they don’t. C1E mode is entered only after longer periods of inactivity. All cores flush their L1 and L2 caches to the L3-cache. Then all cores are clockgated (C1). Once that happens, the Hyper Transport links are put in a lower power state. This allows the chipset to enter a lower power state as well. Only when all these previous steps are done, both sockets are in C1E. DMA events will make the sockets go out of the C1E state. So C1E probably won't happen much on server systems. The C1E state is only entered if absolutely no processing is happening at all.

The C1E mode can reduce power quite a bit:

  • Core clocks are turned off (Clockgate C1 state)
  • L3, North Bridge, and memory controller all divide their clock frequencies (but are not clockgated!)
  • All HyperTranspor links transition to LS2 low power state (LDT_STOP_L)
  • DRAM DLL’s disabled
  • Memory Transitions from precharge power down mode to self refresh mode (low power)

According to AMD, at full load a 1.7GHz 65W ACP Opteron 6164 HEwould consume about 4% more power than a 2.1 GHz 55W ACP 6-core Opteron 2425 HE. AMD measured 225W for  the former, 215W for the latter. We measured 263W on the same system at full load with an Opteron 6174. That's 48W more, or about 24W per CPU. Assuming that the low power CPUs were running at their ACP (65W), we can conclude that the 2.2 GHz Magny-Cours needs about 89W. While the new twelve-core Opteron clearly needs a bit more power than the six-core Opteron, it's not a dramatic increase.

HPC and Encryption Benchmarks Final Words
Comments Locked

58 Comments

View All Comments

  • kokotko - Saturday, April 24, 2010 - link

    why you are NOT SHARIG same "shareable" components - like PSU ??????

    NO WONDER THE NUMBERS ARE WORSE ! ! !
  • blurian589 - Tuesday, May 11, 2010 - link

    3ds max crashes because of the mental ray renderer. remove the plugin from loading and max will start up. its due to mental ray cannot see more than 16 threads (physical or virtual via hyper-threading). please do test the max rendering performance. thanks
  • Desired_Username - Tuesday, June 29, 2010 - link

    In the final words it states "We estimate that the new Opteron 6174 is about 20% slower than the Xeon 5670 in virtualized servers with very high VM counts. " But in the virtualization section I can't seem to figure out what brought you to that conclusion. The VMmark scores for the Cisco X5680 system was 35.83@26 tiles. You have the VMmark for the 6176SE at 31 which is dead on to the HP DL385 G7 which got 30.96@22 tiles. I see the X5680 15% better at best. And the Cisco x5680 system had 192GB of memory to the HP 6176SE system had 128GB. What am I missing here?
  • jeffjeff - Wednesday, September 22, 2010 - link

    I appreciate AMD's lower CPU cost but on the other hand, Oracle will license me their RDBMS per core and whether it's an Intel 56xx or AMD 61xx, I am still paying a relation of .5 license per core.

    So in the end, I would pay 6 cores for AMD and 3 cores for Intel. The price per core is much higher than the hardware price difference.

    Any thought or solutions on this issue would be appreciated...

    Joffrey
  • stealthy - Wednesday, November 24, 2010 - link

    Would it be possible to get the xml parameter files you have used in this test ?
    We are currently in a trial phase at my company to see how the current crop of intel boxes (dual Xeon X5460 procs) hold up against a new z10 system.
    Did you run the swingbench on the server itself or did you use a dedicated client to test ?
  • Big_Mr_Mac - Thursday, December 16, 2010 - link

    In 1991 I had an AMD 386-40 that kicked the snot out of Intel pride and joy 486DX2-66. Benchmarks were 25%+ across the board over Intel. Then Intel lied to the market and started passing off cull processors as viable options calling the 25Mhz and 50Mhz processors, when they were actually processors that failed the benchmarks for 33Mhz and 66Mhz respectively.

    In 1998 When Win98 Beta was released I was building Servers and workstations at a Tech-company and Again the AMD was kicking the snot out of Intel. Load times on new system builds, boot time and performance. The Intel chips could not hack it. Then when MS release their actual market version of Win98...all of a sudden you could not even use an AMD processor to run it. You had to wait 2 weeks for MS come up with a "AMD Patch" to run on an AMD system.

    One think I have seen over 20 years in the industry is that Intel will, Lie, Cheat, Steal and Bribe to try and get the upper hand on AMD. Always have....Always Will!!
  • rautamiekka - Saturday, December 25, 2010 - link

    Why the fuck are you testing with WinServer and M$ SQL ? Just reading this makes my blood boil 9 times in a second.
  • polbel - Saturday, May 21, 2011 - link

    i've been an amd fan for as long as i can remember. started fixing computers in 1979. used to fix mai basic four minis in the mid-80s that were built on amd bit-slice bipolar cpus on boards that cost 15,000$.

    just got 2 opteron 6172 cpus from ebay for what i thought was peanuts (450 $ each) only to discover upon delivery that both had hairline cracks at a 45 degree angle on one corner of the contact pad surface. looking at their web site i could figure i was out on limb and they would laugh in my face if asked for warranty support on these not-boxed cpus. i know some dumb ass managed to break those cpu corners, and tried to shove the crap to an ebay sucker, but the problem lies deeper, mostly in the g34 socket physical design itself of these otherwise beautiful electronic products. the edge of the metal cover doesn't reach the edge of the fiber board, leaving some unsupported area to be broken by dumb asses mimicking the old days when they could put a 40-pin dip cpu upside-down in its socket. so i'm freshly reviewing my belief system about amd while i figure a solution for this crap-hits-the-fan situation. wish i could have told amd engineers to cover theses last millimeters at the bleeding edge. they might say this and that about warranty, i still hold them responsible for this preventable disaster.

    paul :-)

Log in

Don't have an account? Sign up now