OCZ Gets Clever: Agility vs. Vertex, Even Cheaper Indilinx SSDs

Samsung makes SSDs for OEMs, Samsung sells pre-made SSDs to companies like OCZ and Corsair and Samsung also makes NAND flash. Samsung actually made all of the flash that was used in the first generation of Indilinx SSDs. Unfortunately, prices went up.

OCZ was quick to adapt and started making Indilinx drives using flash from different manufacturers. This is the OCZ Vertex, we’re all familiar with it:

This is the OCZ Agility. You get the same controller as the Vertex, but with either Intel 50nm or Toshiba 40nm flash:


My Vertex used Samsung flash, like all other Indilinx drives


My Agility used Intel's 50nm flash


Some lucky Agility owners get Toshiba 40nm flash, which is faster.

The performance is a lower since the flash chips themselves are slower. I'm actually comparing the Vertex Turbo here but my Turbo sample actually runs as fast as most stock Indilinx MLC drives so it provides good reference for an Agility vs. a good Vertex drive:

Used Performance OCZ Agility OCZ Vertex Vertex Advantage
4KB Random Write 7.1 MB/s 7.6 MB/s 7%
4KB Random Read 35.9 MB/s 37.4 MB/s 4.2%
2MB Sequential Write 136.3 MB/s 155.8 MB/s 14.3%
2MB Sequential Read 241.3 MB/s 254.2 MB/s 5.3%
PCMark Vantage Overall 14468 14694 1.6%
PCMark Vantage HDD 24293 25309 4.2%

 

The performance ranges from 0 - 5% in the PCMark suite and jumps up to 4 - 14% in the low level tests. The price difference amounts to around 12% for a 128GB drive and 9.5% for a 64GB drive. There's no 256GB Agility.

  OCZ Agility OCZ Vertex Price Difference
64GB $199.00 $219.00 $19
128GB $329.00 $369.00 $40
256GB N/A $725.00 N/A

 

If you want to make the jump to an SSD and are looking to save every last dollar, the Agility is an option.

I think the Agility line is a great idea from OCZ. I’m not sure about you but personally, as long as the flash is reliable, I don’t care who makes it. And I’m willing to give up a little in the way of performance in order to hit more competitive price points.

Early TRIM Support on Indilinx Drives The OCZ Solid 2: More Flash Swappin
Comments Locked

295 Comments

View All Comments

  • Anand Lal Shimpi - Monday, August 31, 2009 - link

    wow I misspelled my own name :) Time to sleep for real this time :)

    Take care,
    Anand

  • IntelUser2000 - Monday, August 31, 2009 - link

    Looking at pure max TDP and idle power numbers and concluding the power consumption based on those figures are wrong.

    Look here: http://www.anandtech.com/cpuchipsets...px?i=3403&a...">http://www.anandtech.com/cpuchipsets...px?i=3403&a...

    Modern drives quickly reach idle even between times where the user don't even know and at "load". Faster drives will reach lower average power because it'll work faster to get to idle. This is why initial battery life tests showed X25-M with much higher active/idle power figures got better battery life than Samsungs with less active/idle power.

    Max power is important, but unless you are running that app 24/7 its not real at all, especially the max power benchmarks are designed to reach close to TDP as possible.
  • Anand Lal Shimpi - Monday, August 31, 2009 - link

    I agree, it's more than just max power consumption. I tried to point that out with the last paragraph on the page:

    "As I alluded to before, the much higher performance of these drives than a traditional hard drive means that they spend much more time at an idle power state. The Seagate Momentus 5400.6 has roughly the same power characteristics of these two drives, but they outperform the Seagate by a factor of at least 16x. In other words, a good SSD delivers an order of magnitude better performance per watt than even a very efficient hard drive."

    I didn't have time to run through some notebook tests to look at impact on battery life but it's something I plan to do in the future.

    Take care,
    Anand
  • IntelUser2000 - Monday, August 31, 2009 - link

    Thanks, people pay too much attention to just the max TDP and idle power alone. Properly done, no real apps should ever reach max TDP for 100% of the duration its running at.
  • cristis - Monday, August 31, 2009 - link

    page 6: "So we’re at approximately 36 days before I exhaust one out of my ~10,000 write cycles. Multiply that out and it would take 36,000 days" --- wait, isn't that 360,000 days = 986 years?
  • Anand Lal Shimpi - Monday, August 31, 2009 - link

    woops, you're right :) Either way your flash will give out in about 10 years and perfectly wear leveled drives with no write amplification aren't possible regardless.

    Take care,
    Anand
  • cdillon - Monday, August 31, 2009 - link

    I gather that you're saying it'll give out after 10 years because a flash cell will lose its stored charge after about 10 years, not because the write-life will be surpassed after 10 years, which doesn't seem to be the case. The 10-year charge life doesn't mean they become useless after 10 years, just that you need to refresh the data before the charge is lost. This makes flash less useful for data archival purposes, but for regular use, who doesn't re-format their system (and thus re-write 100% of the data) at least once every 10 years? :-)
  • Zheos - Monday, August 31, 2009 - link

    "This makes flash less useful for data archival purposes, but for regular use, who doesn't re-format their system (and thus re-write 100% of the data) at least once every 10 years? :-)"

    I would like an input on that too, cuz thats a bit confusing.
  • GourdFreeMan - Tuesday, September 1, 2009 - link

    Thermal energy (i.e. heat) allows the electrons trapped in the floating gate to overcome the potential well and escape, causing zeros (represented by a larger concentration of electrons in the floating gate) to eventually become ones (represented by a smaller concentration of electrons in the floating gate). Most SLC flash is rated at about 10 years of data retention at either 20C (68F) or 25C (77F). What Anand doesn't mention is that as a rule of thumb for every 9 degrees C (~16F) that the temperature is raised above that point, data retention lifespan is halved. (This rule of thumb only holds for human habitable temperatures... the exact relation is governed by the Arrhenius equation.)

    Wear leveling and error correction codes can be employed to mitigate this problem, which only gets worse as you try to store more bits per cell or use a smaller lithography process without changing materials or design.
  • Zheos - Tuesday, September 1, 2009 - link

    Thank you GourdFreeMan for the additional input,

    But, if we format like every year or so , doesnt the countdown on data retention restart from 0 ? or after ~10 year (seems too be less if like you said temperature affect it) the SSD will not only fail at times but become unusable ? Or if we come to that point a format/reinstall would resolve the problem ?

    I dont care about losing data stored after 10 years, what i do care is if the drive become ASSURELY unsusable after 10 year maximum. For drives that comes at a premium price, i don't like this if its the case.

Log in

Don't have an account? Sign up now