Final Words

Well, we've known it was coming for quite a while. We knew it would be a many-core CPU architecture well suited to graphics. And with as much information as we were given, when we sat down to look at what we had we felt like we still didn't know anything about Larrabee. Piles of data and information, insight into how a software render would fit on top of the underlying architecture... it has left us with the feeling that all this is a really cool idea with great potential, but we just don't have any idea what or how well it will do when it finally hits.

Of course, this is the first time any real detail has been given, and any hint of product is at least 12 to 18+ months off. We can't expect Intel to give everything away right off the bat. We are very happy to have the detail we do, and can't wait to get more.

While we are very interested in the architecture from the sort of technophile point of view that we can't help but have, technology for technology sake (no matter how cool the theory behind it might be) amounts to nothing without real-world application and benefit. For Larrabee it will all come down to peformance and price.

AMD has shown that you don't need to be on top to compete. As long as performance somewhere in the middle of the pack can be produced, appropriate and aggressive pricing can go quite a long way. For the consumer it is always a cost/benefit analysis, and there are quite a number of computers with $100 - $300 graphics cards under the hood. If compatibility is there, if performance is there, and if Intel is able to price it right, the first round of Larrabee hardware doesn't need to be ground breaking.

Getting a good foothold and sticking it out for the long haul should be Intel's goal. Compatibility (especially with the track record of Intel's integrated graphics) is likely more important than pure performance. Getting product out there into the market is necssary before developers will even start to take a chance on pushing the hardware itself. And this is where Larrabee could really shine.

Opening the door to fully programmable rendering and making it attractive enough for developers to start pushing the envelope will be a long process. The current game development arena is all about return on investment, and except for a few brave souls we will likely see game and engine developers stick to DirectX 10 for quite some time even after DX 11 comes along. Those who venture into the realm of pure software renderes written for a highly data-parallel CPU will be the exception rather than the norm.

Things That Could Go Wrong
Comments Locked

101 Comments

View All Comments

  • Shinei - Monday, August 4, 2008 - link

    Some competition might do nVidia good--if Larrabee manages to outperform nvidia, you know nvidia will go berserk and release another hammer like the NV40 after R3x0 spanked them for a year.

    Maybe we'll start seeing those price/performance gains we've been spoiled with until ATI/AMD decided to stop being competitive.

    Overall, this can only mean good things, even if Larrabee itself ultimately fails.
  • Griswold - Monday, August 4, 2008 - link

    Wake-up call dumbo. AMD just started to mop the floor with nvidias products as far as price/performance goes.
  • watersb - Monday, August 4, 2008 - link

    great article!

    You compare the Larrabee to a Core 2 duo - for SIMD instructions, you multiplied by a (hypothetical) 10 cores to show Larrabee at 160 SIMD instructions per clock (IPC). But you show non-vector IPC as 2.

    For a 10-core Larrabee, shouldn't that be x10 as well? For 20 scalar IPC
  • Adamv1 - Monday, August 4, 2008 - link

    I know Intel has been working on Ray Tracing and I'm really curious how this is going to fit into the picture.

    From what i remember Ray Tracing is a highly parallel and scales quite well with more cores and they were talking about introducing it on 8 core processors, it seems to me this would be a great platform to try it on.
  • SuperGee - Thursday, August 7, 2008 - link

    How it fit's.
    GPU from ATI and nV are called HArdware renderers. Stil a lot of fixed funtion. Rops TMU blender rasterizer etc. And unified shader are on the evolution to get more general purpouse. But they aren't fully GP.
    This larrabee a exotic X86 massive multi core. Will act as just like a Multicore CPU. But optimised for GPU task and deployed as GPU.
    So iNTel use a Software renderer and wil first emulate DirectX/OpenGL on it with its drivers.
    Like nv ATI is more HAL with as backup HEL
    Where Larrabee is pure HEL. But it's parralel power wil boost Software method as it is just like a large bunch of X86 cores.
    HEL wil runs fast, as if it was 'HAL' with LArrabee. Because the software computing power for such task are avaible with it.

    What this means is that as a GFX engine developer you got full freedom if you going to use larrabee directly.

    Like they say first with a DirectX/openGL driver. Later with also a CPU driver where it can be easy target directly. thus like GPGPU task. but larrabee could pop up as extra cores in windows.
    This means, because whatever you do is like a software solution.
    You can make a software rendere on Ratracing method, but also a Voxel engine could be done to. But this software rendere will be accelerated bij the larrabee massive multicore CPU with could do GPU stuf also very good. But will boost any software renderer. Offcourse it must be full optimised for larrabee to get the most out of it. using those vector units and X86 larrabee extention.

    Novalogic could use this to, for there Voxel game engine back in the day's of PIII.

    It could accelerate any software renderer wich depend heavily on parralel computing.
  • icrf - Monday, August 4, 2008 - link

    Since I don't play many games anymore, that aspect of Larrabee doesn't interest me any more than making economies of scale so I can buy one cheap. I'm very interested in seeing how well something like POV-Ray or an H.264 encoder can be implemented, and what kind of speed increase it'd see. Sure, these things could be implemented on current GPUs through Cuda/CTM, but that's such an different kind of task, it's not at all quick or easy. If it's significantly simpler, we'd actually see software sooner that supports it.
  • cyberserf - Monday, August 4, 2008 - link

    one word: MATROX
  • Guuts - Monday, August 4, 2008 - link

    You're going to have to use more than one word, sorry... I have no idea what in this article has anything to do with Matrox.
  • phaxmohdem - Monday, August 4, 2008 - link

    What you mean you DON'T have a Parhelia card in your PC? WTF is wrong with you?
  • TonyB - Monday, August 4, 2008 - link

    but can it play crysis?!

Log in

Don't have an account? Sign up now