Final Words

Game consoles have always been different, architecturally.  The PlayStation 2 was very different from the original Xbox, and thus it is no surprise to see that the two platforms continue to be quite different this time around. 

Given what we’ve discussed thus far, there are a number of conclusions we can draw:

The most important thing to keep in mind is that the revolution in physics engines and collision detection isn’t going to happen over night.  The first games for both consoles will, for all intents and purposes, be single threaded titles.  More adventurous developers may even split up execution into two concurrent threads, but for the most part don’t expect to see a dramatic change in the quality and reality of the physics simulation of the first titles, especially when compared to titles like Doom 3 and Half Life 2. 

However, a change is coming and by the end of next year multi-threaded game engines should be commonplace on both consoles and PCs, which will hopefully lead to much more entertaining experiences.  The approach to that change will be different according to the platform; without a doubt, developers will have their work cut out for them.  

The transition to multi-threaded development alone will increase development time 2 or 3 fold.  Not to mention that the approach to architecting game engines will differ whether you are porting to the Xbox 360 or the PlayStation 3.  The Xbox 360 is clearly going to be the easier of the two to develop for once a game engine is multi-threaded, just because of the general purpose nature of its hardware.  That being said, it won’t be impossible to get the same level of performance out of the PS3, it will just take more work.  In fact, specialized hardware can be significantly faster than general purpose hardware at certain tasks, giving the PS3 the potential to outperform the Xbox 360 in CPU tasks.  It has yet to be seen how much work is required to truly exploit that potential however, and it will definitely be a while before we can truly answer that question. 

Cell’s on-die memory controller is a blessing for game performance; it most definitely will keep the PPE fed far better than the Xbox 360’s external memory controller.  Even the cache size advantage of the 360 won’t be able to offset the reduction in memory latency thanks to an on-die memory controller. 

The on-die memory controller is not all an advantage however, a big part of its inclusion is out of necessity.  Remembering back to our discussion about the SPEs as being in-order with no cache, threads run on these processors only have access to 256KB of local memory, which is reasonable for a cache, but not much in the way of memory.  So these SPEs will depend on having low latency access to memory in order to keep their pipeline filled and actually contribute any useful performance to the system.

At the end of day 1, when running mostly single threaded code, the performance difference from a CPU standpoint between the Xbox 360’s Xenon and the PS3’s Cell processor is basically a wash.  The 360 has more cache, while the Cell has a lower latency path to main memory.  In the end, the first generation or two of games will mainly be a GPU battle between the two consoles, and both will offer significant improvements over what we have with current consoles. 

Graphics-wise the 360’s Xenos GPU and the PS3’s RSX are fairly different in implementation, but may end up being very similar in performance.  Treating Xenos as a 24-pipe R420, it could be quite competitive with a 24-pipe RSX despite a lower clock speed.  The unified shader architecture of the Xenos GPU will offer an advantage in the majority of games today where we aren’t very geometry limited.  The free 4X AA support offered by Xenos is also extremely useful in a console, especially when hooked up to a large TV.

If the PS3’s RSX isn’t much more than a higher clocked G70 then at least we have a good idea of its performance.  NVIDIA has mentioned that by the time the RSX launches we will have a faster GPU on the PC, which leads us to believe that the performance advantages of the RSX are mostly clock speed related.  At 550MHz, the RSX GPU should have no problems handling both 720p and 1080p resolutions, although the latter won’t be possible in all games, mainly those that are more texture bandwidth bound.  We do think it was a mistake for Microsoft not to support 1080p, even if only supported by a handful of games/developers.  At the same time, by not imposing strict AA implementation regulations like Microsoft, Sony does open themselves up to having some PS3 games plagued by jaggies despite the power of the console.  Given the amount of power in both of these consoles, we truly hope that their introduction will mark the end of aliasing in console games, but some how we have a feeling it won’t.  Aliasing has plagued console games for too long for it to just disappear, that has to be too good to be true. 

With at least 5 months before the official release of Microsoft’s Xbox 360, and a number of still unanswered questions about the PlayStation 3, there is surely much more to discuss in the future.  The true nature of NVIDIA’s RSX GPU, the real world programming model for Cell, even final hardware details for both consoles has yet to be fully confirmed.  As we come across more information we will analyze and dissect it, but until then we hope you’ve gained more of an understanding of these consoles through this article. 

System Costs
Comments Locked

93 Comments

View All Comments

  • BenSkywalker - Sunday, June 26, 2005 - link

    ""One thing is for sure, support for two 1080p outputs in spanning mode (3840 x 1080) on the PS3 is highly unrealistic. At that resolution, the RSX would be required to render over 4 megapixels per frame, without a seriously computation bound game it’s just not going to happen at 60 fps." -- Quote from page 10"

    First off 1080p doesn't support 60FPS as of this moment anyway, and there are an awful lot of games on consoles that aren't remotely close to being GPU bound anyway. Remember that the XBox has titles now that are pushing out 1080i and the RSX is easily far more then four times the speed of the GPU in the XBox.
  • tipoo - Wednesday, August 6, 2014 - link

    "RSX is easily far more then four times the speed of the GPU in the XBox."

    It's funny reading these comments years later, and seeing how crazy the PS3 hype machine was. I assume this insane comment reffered to the 1 terraflop RSX thing, which was a massive joke. RSX was worse than Xenon not only in raw gflops (180 vs over 200 I think), but since it didn't have unified shaders it could be bottlenecked by a scene having too much vertex or pixel effects and leaving shaders underused.
  • calimero - Sunday, June 26, 2005 - link

    Here is one tip about Cell:
    to play MP3 files (stereo) on PC you need 100MHz 486 CPU. Atari Falcon030 with MC68030 (16MHz) and DSP (32MHz) can do same thing!
    Everyone who know to program will find Cell outstanding and thrilling everyone else who pretend to be a programer please continue to waste CPU cycles with your shity code!
  • coolme - Sunday, June 26, 2005 - link

    "Supporting 1080p x2 may seem like overkill,"

    It's not gonna support 1080p x2

    "One thing is for sure, support for two 1080p outputs in spanning mode (3840 x 1080) on the PS3 is highly unrealistic. At that resolution, the RSX would be required to render over 4 megapixels per frame, without a seriously computation bound game it’s just not going to happen at 60 fps." -- Quote from page 10
  • nevermind4711 - Sunday, June 26, 2005 - link

    People have different ways of expressing the frequency of DDRAM. The correct memory frequency of 7800GTX is 256MB/256-bit GDDR3 at 600MHz, but as it is double rate some people say 1200 MHz.

    In the same way you can say the RSX memory is operating at 1400 MHz. How else could 128 bit result in a memory bandwidth of 22 GB/s for the RTX?

    #64 knitecrow, who is your source that the RSX does not contain e-dram, or is it just speculation?

    Besides, your conclusion from extrapolating the transistor count may be correct, but assuming the transistor count is proportional to the number of pixel pipelines is a rather big simplification, there is quite a lot of other stuff inside a GPU as well, stuff that does not scale proportionally to the pixel pipelines.
  • Furen - Sunday, June 26, 2005 - link

    The RSX is supposed to be clocked higher but will only have a 700MHz, 128bit memory bus (as opposed to the 1200MHz, 256bit memory bus on the 7800gtx).
  • knitecrow - Saturday, June 25, 2005 - link

    #61
    too bad you don't speak marketing.
    When they say near.. it means very close. Could be slightly under or over. If it was something like 320M... they will be hyp3ing 320M.


    #62 too bad you are wrong

    with 300M transistors, the RSX is a native 24 pixel pipeline card

    You can extrapolate the number by looking at:
    6800ultra - 16 - 222M
    6600GT - 8 - 144M

    it has no eDRAM.

    The features remain to be seen, but its going to be a G70 derivate -- just like XGPU for the xbox was a geforce3 derivative.

    There is absolutely no evidence to suggest that the RSX is going to be more powerful than 7800GTX.

    Just because a product comes out later doesn't make it better

    Exhibit A:
    Radeon 9700pro vs. 5800ultra

  • Darkon - Saturday, June 25, 2005 - link

    http://www.psinext.com/index.php?categoryid=3&...
  • Dukemaster - Saturday, June 25, 2005 - link

    I think it is very clear why the RSX gpu has the same number of transistors but still is more powerfull then the 7800GTX: the 7800GTX is a chip with 32 pipelines with 8 of them turned off.
  • nevermind4711 - Saturday, June 25, 2005 - link

    Interesting article. However, I find it strange that Anand and Derek do not comment on the difference in floating point capacity between the combatants. 1 TFlops for X360 vs. 2 TFlops for PS3. For X360 we know that the majority of flops come from the GPU, where probably the big part consists of massively paralell compare ops and such coming from the AA- and filtering circuitry integrated with the e-DRAM.
    It would be very interesting to know how the RSX provides 1.8 TFlops. I do not think the G70 has a capacity anything near that. Could it be possible that Sony will bring some e-DRAM to the party together with AA and filtering circuitry similar to X360. After all Sony has quite some experience of e-DRAM from PS2 and PSP.
    Anand and Derek wrote "Both the G70 and the RSX share the same estimated transistor count, of approximately 300.4 million transistors." Where do this information come from? Sony only said in its presentation the RSX will have 300+ mil t:s. G70 we now know contains 302 mil t:s.
    #48: Sony may very well have replaced some video en/de-coding circuitry of the G70 with some e-dram circuitry.

Log in

Don't have an account? Sign up now