Miscellaneous Performance Metrics

This section looks at some of the other commonly used benchmarks representative of the performance of specific real-world applications.

Web Browser Benchmarks - JetStream and Speedometer

Web browser-based workloads have emerged as a major component of the typical home and business PC usage scenarios. Beginning with this review, we are including browser-focused benchmarks from the WebKit developers. Hosted at BrowserBench, JetStream 2.0 benchmarks JavaScript and WebAssembly performance, while Speedometer measures web application responsiveness. We also process MotionMark, but the confidence level of the results vary as much as +/-35%. Hence, we present only the Jetstream 2.0 and Speedometer results for the three top browsers below.

Web Browser - Speedometer 2.0

Web Browser - JetStream 2.0

In order to maintain reproducibility, we self-host the BrowserBench benchmarks (git clone of the WebKit repository as on July 1, 2021). The browser versions used for the numbers above are presented in the table included in each system's review. Since this is a new benchmark in the suite, the tables for all systems presented in the graphs above are given below.

ASRock NUC BOX-1165G7 Browser Bench
  Speedometer 2.0 JetStream 2.0 MotionMark 1.2
Microsoft Edge
(92.0.902.55)
140 ± 2.1 163.900 693.27 ± 16.57%
Google Chrome
(92.0.4515.107)
164 ± 3.2 161.907 813.50 ± 2.29%
Mozilla Firefox
(90.0.2.7872)
137 ± 3.0 103.359 619.00 ± 10.70%

BAPCo's SYSmark 25 and UL's PCMark benchmarks both include web browser activitites as part of their evaluation scheme. However, the performance for this increasingly important workload tends to get lost in the presentation of a single number. JetStream and Speedometer help us focus on how different PC configurations vary in terms of the user experience with respect to web browsers.

3D Rendering - CINEBENCH R23

We use CINEBENCH R23 for 3D rendering evaluation. R23 provides two benchmark modes - single threaded and multi-threaded. Evaluation of different PC configurations in both supported modes provided us the following results.

3D Rendering - CINEBENCH R23 - Single Thread

3D Rendering - CINEBENCH R23 - Multiple Threads

Multi-threaded performance suffers when compared against the AMD Renoir offering, and even against Intel's own hexa-core CML-U-based Frost Canyon NUC. However, single-threaded performance is a clear win for the TGL-U mini-PC.

x265 Benchmark

Next up, we have some video encoding benchmarks using x265 v2.8. The appropriate encoder executable is chosen based on the supported CPU features. In the first case, we encode 600 1080p YUV 4:2:0 frames into a 1080p30 HEVC Main-profile compatible video stream at 1 Mbps and record the average number of frames encoded per second.

Video Encoding - x265 - 1080p

Our second test case is 1200 4K YUV 4:2:0 frames getting encoded into a 4Kp60 HEVC Main10-profile video stream at 35 Mbps. The encoding FPS is recorded.

Video Encoding - x265 - 4K 10-bit

This is purely a multi-threaded benchmark, and the 4C/8T TGL-U can't hold a torch to the 6C/12T CML-U or the 8C/16T Renoir APU in the Frost Canyon NUC and the 4X4 BOX-4800U respectively.

7-Zip

7-Zip is a very effective and efficient compression program, often beating out OpenCL accelerated commercial programs in benchmarks even while using just the CPU power. 7-Zip has a benchmarking program that provides tons of details regarding the underlying CPU's efficiency. In this subsection, we are interested in the compression and decompression rates when utilizing all the available threads for the LZMA algorithm.

7-Zip LZMA Compression Benchmark

7-Zip LZMA Decompression Benchmark

This is again a test of multi-threading performance, and the TGL-U mini-PC comes in the middle of the pack.

Cryptography Benchmarks

Cryptography has become an indispensable part of our interaction with computing systems. Almost all modern systems have some sort of hardware-acceleration for making cryptographic operations faster and more power efficient. In this sub-section, we look at two different real-world applications that may make use of this acceleration.

BitLocker is a Windows features that encrypts entire disk volumes. While drives that offer encryption capabilities are dealt with using that feature, most legacy systems and external drives have to use the host system implementation. Windows has no direct benchmark for BitLocker. However, we cooked up a BitLocker operation sequence to determine the adeptness of the system at handling BitLocker operations. We start off with a 2.5GB RAM drive in which a 2GB VHD (virtual hard disk) is created. This VHD is then mounted, and BitLocker is enabled on the volume. Once the BitLocker encryption process gets done, BitLocker is disabled. This triggers a decryption process. The times taken to complete the encryption and decryption are recorded. This process is repeated 25 times, and the average of the last 20 iterations is graphed below.

BitLocker Encryption Benchmark

BitLocker Decryption Benchmark

The lack of cores mean that the encryption rate in the TGL-U mini-PC is limited compared to the other systems.

Creation of secure archives is best done through the use of AES-256 as the encryption method while password protecting ZIP files. We re-use the benchmark mode of 7-Zip to determine the AES256-CBC encryption and decryption rates using pure software as well as AES-NI. Note that the 7-Zip benchmark uses a 48KB buffer for this purpose.

7-Zip AES256-CBC Encryption Benchmark

7-Zip AES256-CBC Decryption Benchmark

Despite slightly higher decryption performance (similar to what we saw for the BitLocker decryption benchmark), the lack of cores mean that the Frost Canyon NUC and the Renoir mini-PC both perform better for dealing with encrypted archives.

Yet another cryptography application is secure network communication. OpenSSL can take advantage of the acceleration provided by the host system to make operations faster. It also has a benchmark mode that can use varying buffer sizes. We recorded the processing rate for a 8KB buffer using the hardware-accelerated AES256-CBC-HAC-SHA1 feature.

OpenSSL Encryption Benchmark

OpenSSL Decryption Benchmark

Finally, we see one cryptography benchmark where TGL-U comes out as the undoubted leader. This takes away nothing from the fact that the 4C/8T configuration of the Core i7-1165G7 acts as a detriment across many common consumer workloads.

Agisoft Photoscan

Agisoft PhotoScan is a commercial program that converts 2D images into 3D point maps, meshes and textures. The program designers sent us a command line version in order to evaluate the efficiency of various systems that go under our review scanner. The command line version has two benchmark modes, one using the CPU and the other using both the CPU and GPU (via OpenCL). We present the results from our evaluation using the CPU mode only. The benchmark (v1.3) takes 84 photographs and does four stages of computation:

  • Stage 1: Align Photographs (capable of OpenCL acceleration)
  • Stage 2: Build Point Cloud (capable of OpenCL acceleration)
  • Stage 3: Build Mesh
  • Stage 4: Build Textures

We record the time taken for each stage. Since various elements of the software are single threaded, and others multithreaded, it is interesting to record the effects of CPU generations, speeds, number of cores, and DRAM parameters using this software.

Agisoft PhotoScan Benchmark - Stage 1

Agisoft PhotoScan Benchmark - Stage 2

Agisoft PhotoScan Benchmark - Stage 3

Agisoft PhotoScan Benchmark - Stage 4

Better single-threaded performance is no match for the additional cores that Photoscan is able to utilize to shorten the processing time in multiple stages.

Dolphin Emulator

Wrapping up our application benchmark numbers is the new Dolphin Emulator (v5) benchmark mode results.

Dolphin Emulator Benchmark

The single-threaded performance advantage for Tiger Lake enables the NUC BOX-1165G7 to complete the Dolphin emulator benchmark faster than any of the other systems it is being compared against.

UL Benchmarks - PCMark and 3DMark HTPC Workloads
Comments Locked

33 Comments

View All Comments

  • sutramassage2 - Wednesday, September 1, 2021 - link

    Our flair for showcasing koramangala ingredients shines through in every one of our menus, whether you are looking for a casual lunch or dinner at sutra massage & b2b spa, or a traditional Afternoon sandwich massage. for more info visit here:- https://www.sutramassage.com
  • mode_13h - Tuesday, September 21, 2021 - link

    spammer
  • willis936 - Thursday, August 26, 2021 - link

    This is a quite nice looking product. I just wish they'd have used a latching power connector.
  • brunosalezze - Thursday, August 26, 2021 - link

    I have one of these. Its actually my work pc right now, I dont need a gpu or multiple cores to code, I and have dedicated servers avaiable to run the code. It serves me very well to be able to have 2 4k monitors and not strugle to move the mouse. My only issue with it, its when I try to hook up a gpu with a R43SG. Its very hard to boot, the issue is not the conection, I've used this connector to other mini pcs with my 6800 and always worked very well, the issue is this particular bios, I think.
  • xsoft7 - Thursday, August 26, 2021 - link

    there is a Zen3 mini PC.. with 5900HX which costs 649$ can you review it?
    https://store.minisforum.com/collections/all-produ...

    many youtube videos are raving about it.
  • abufrejoval - Thursday, August 26, 2021 - link

    You send them one, they'll be more likely to review it.

    Now seriously, you can infer quite a bit on Ryzen by looking at what has been tested already.

    All these APUs are basically the same silicon operated at distinct power settings, ~15 Watts for 5800U, ~35 Watts for 5900HX and ~65 Watts for 5700G.

    The Vega9 graphics don't seem to benefit a terrible lot from extra Wattage, because it's mostly bandwidth constained. There are reviews out there which demonstrate the potential with overclocker DIMMs and an overclocked GPU, but those gains remain linear from a very low baseline.

    Peak clocks are just a couple hundred MHz apart, hardly enough to matter, so what you mostly get from the extra Watts is sustained clocks on higher core counts. Go take the values for 15 Watts and 65 Watts, split the difference and add ~20% because CMOS won't give linear clock returns on Watts beyond say 2GHz.

    Somewhere on Youtube you'll find someone raving about any thing. But APUs aim really for the very rational, just enough to get the work done in a couple of form factors and at a few price points.
  • meacupla - Thursday, August 26, 2021 - link

    How would a 1135G7 (28W) compare with a Ryzen 5 PRO 5650GE (35W)?

    There are, or were, plenty of 1L class SFF PCs using the 4650GE, and OEMs are probably transitioning to the 5650GE right now.

    If you are going to use a U series APUs at higher TDP, because it's a SFF, I think you might as well include 35W desktop APUs used in SFF for comparison.
  • abufrejoval - Thursday, August 26, 2021 - link

    I got the NUC8 (Iris 655), NUC10 (UHD) and NUC11 (Xe) all as i7, each with 64GB and 10Gbit via Sabrent TB3 (Aquantia really) NICs to operate as a oVirt(RHV) HCI cluster.

    Played around with Windows a bit before they became "productive".

    I was really interested to see how the iGPU generations would play out and in IPC vs cores, 14nm vs. 10nm etc.

    Twice the iGPU resources (48 vs 24EU) + the 128MB eDRAM on the Iris 655 only got 50% performance increase, just as the 3DMark gaming score shows. That seemed to spell trouble for the 96EU Xe, which doesn't have any of that. But it didn't. Instead the 96EU Xe scales pretty much linearly vs the 24EU UHD, but that still doesn't make it a games engine. Still a NIght Raid or WildLife type game runs just fine at FHD on the NUC11.

    In terms of CPU benchmarks, it was a clear win for the NUC11. It got awfully close to my 5800X on single core benchmarks, especially on Linux, while the 6-Core 10700U could not gain ground against the 4-Core 1065G7 on e.g. Blender or anything thready.

    I also have a Lenovo 5800U notebook, which can be configured for the 28Watt and 15Watt energy consumption levels (which is sticks to, religiously!) and it really can't gain much ground on thready workloads against the 1065G7, either, when that is configured to those same 15 and 28 Watt limits. I only measured via HWinfo, not at the wall, so there is that.

    What I really like about the NUCs is that they allow very precise control over P1, P2, TAU and the fans (I need absolute control over maximum noise and want max CPU for that in operation). They give you that, while the generation over generation looks of that BIOS are so different, it seams to be completely different teams.

    Ah and yeah, the Xe graphics do outperform the Vega9 on the 5800U significantly in numbers, while it doesn't really matter for gaming. Both are super smooth with Google Maps in 3D mode on Chromium in Windows at 4k. But any software less optimized will struggle beyond 2D.

    Multi-Monitor support on all the Intel iGPUs is excellent on Windows and Linux, the Vega9 has serious issues switching between external and internal graphics even on Windows. A dual alt-mode USB-C adapter which supports a 4k primary and a FHD secondary seamlessly on any Intel iGPU with very OS I've tested works as you'd expect it, but with the Radeon drivers (both Lenovo and latest AMD) just switching between the 3k laptop screen and the external 4k primary freezes the output to the point where only a hard poweroff will bring it back.

    With all systems playing with the power settings (15-64Watts for the NUCs, 12-28Watts for 5800U), those settings did little to nothing for the iGPU. It's really just all about how much left-over budget goes to enable higher CPU clocks (until thermals kick in).
  • zsdersw - Friday, August 27, 2021 - link

    What exactly is "industrial" about it? If it's not fanless it can't really be considered industrial and it's just another NUC-type computer.
  • abufrejoval - Friday, August 27, 2021 - link

    The marketing channel.

    They don't metion any testing specification in the technical data on the ASrock web site.

    Without that it may just mean that consumer (fool protection) return rights might not apply.

Log in

Don't have an account? Sign up now