Gaming Tests: Strange Brigade

Strange Brigade is based in 1903’s Egypt, and follows a story which is very similar to that of the Mummy film franchise. This particular third-person shooter is developed by Rebellion Developments which is more widely known for games such as the Sniper Elite and Alien vs Predator series. The game follows the hunt for Seteki the Witch Queen, who has arose once again and the only ‘troop’ who can ultimately stop her. Gameplay is cooperative centric with a wide variety of different levels and many puzzles which need solving by the British colonial Secret Service agents sent to put an end to her reign of barbaric and brutality.

The game supports both the DirectX 12 and Vulkan APIs and houses its own built-in benchmark as an on-rails experience through the game. For quality, the game offers various options up for customization including textures, anti-aliasing, reflections, draw distance and even allows users to enable or disable motion blur, ambient occlusion and tessellation among others. Strange Brigade supports Vulkan and DX12, and so we test on both.

  • 720p Low, 1440p Low, 4K Low, 1080p Ultra

The automation for Strange Brigade is one of the easiest in our suite – the settings and quality can be changed by pre-prepared .ini files, and the benchmark is called via the command line. The output includes all the frame time data.

AnandTech Low Resolution
Low Quality
Medium Resolution
Low Quality
High Resolution
Low Quality
Medium Resolution
Max Quality
Average FPS
95th Percentile

AnandTech Low Resolution
Low Quality
Medium Resolution
Low Quality
High Resolution
Low Quality
Medium Resolution
Max Quality
Average FPS
95th Percentile

All of our benchmark results can also be found in our benchmark engine, Bench.

Gaming Tests: Red Dead Redemption 2 Conclusion: TDP is Not Fit For Purpose
Comments Locked

210 Comments

View All Comments

  • blckgrffn - Thursday, January 21, 2021 - link

    Thanks for the review, as it basically shows what other reviews already show, namely if you set aggressive PL1 and PL2 values across K & non K SKUs then you'll get similar performance.

    I am curious why you said the performance is much lower with a 65W power limit and then didn't include those results.

    I feel like it is common knowledge, especially with 10th Gen Intel CPUs that you need to manually configure PL1 and PL2 in keeping with your cooling solution, but perhaps not.
  • blckgrffn - Thursday, January 21, 2021 - link

    I mean, published PL1 for this CPU is 10700 is 65, PL2 is 224 for 28 seconds.

    Running outside of those value is essentially turbo overclocking (yeah, I know Intel has also redefined that term).

    If your motherboard auto overclocks the CPU via a ridiculous PL1 value then ¯\_(ツ)_/¯
  • Tunnah - Thursday, January 21, 2021 - link

    Intel has no incentive to change their policy and label their products with the actual power draw they'll be using because they'll show how much more they suck up compared to AMD. People are constantly looking for metrics to compare the 2 "teams", and Intel getting to keep the labels of 65w and 125w lets the fans say "see it has the same power usage as AMD!"
  • yeeeeman - Thursday, January 21, 2021 - link

    this looks just fine to me as long as it is clear for the user.
  • magreen - Friday, January 22, 2021 - link

    But it is not.
  • porina - Thursday, January 21, 2021 - link

    From my observations of Zen 2 at stock operation, 65W TDP models tended to sit continuously at the 88W PPT limit under most all-core load conditions. Has this changed with Zen 3? Do they not hit 88W so easily, or is another (current) limiter taking over? Or is the limit a different value now?
  • Smell This - Friday, January 22, 2021 - link


    Presumably, the Zen3 would operate under the same 'constraints' ----- The constraints are as follows:

    ♦ Package Power Tracking (PPT): The power threshold that is allowed to be delivered to the socket. This is 88W for 65W TDP processors, and 142W for 105W TDP processors.

    ♦ Thermal Design Current (TDC): The maximum amount of current delivered by the motherboard’s voltage regulators when under thermally constrained scenarios (high temperatures). This is 60A for 65W TDP processors, and 95A for 105W TDP processors.

    ♦ Electrical Design Current (EDC): This is the maximum amount of current at any instantaneous short period of time that can be delivered by the motherboard’s voltage regulators. This is 90A for 65W TDP processors, and 140A for 105W TDP processors.

    "Looking at the total power consumption of the new 3700X, the chip is very much seemingly hitting and maintaining the 88W PPT limitations of the default settings, and we’re measuring 90W peak consumption across the package."
  • Olaf van der Spek - Thursday, January 21, 2021 - link

    Why would one want to limit turbo budgets? Thermals? If there's no thermal headroom the CPU won't turbo (as far).
    Efficiency?
  • Calin - Friday, January 22, 2021 - link

    The motherboard has power limits - both in instant maximum current from the voltage regulation phase (remember, the mainboard receives 3.3 Volts, 5V, 12V and maybe -5V and -12V from the PSU and has to convert that to processor voltage), and in cooling capacity for the VRM (Voltage Regulation Module).
    Regardless of the power limits, the processor will slow down if its internal temperature is too great.
    So yes, the "my mainboard's power delivery module cannot deliver more than 80 amps" is a possible reason. Another would be "My case has bad cooling and I want to keep the processor colder". Another would be "As soon as the sustained power goes over 140 watts, the fans in the case start whirring and I hate the sound".
  • DominionSeraph - Thursday, January 21, 2021 - link

    >This does come with a reasonably good default cooler.

    No. Just no. The Ryzen coolers are utter trash and you're doing a disservice to your readers who may not have ever had a quiet cooler to say otherwise. I build PCs and I've had several Ryzens go through and I have never seen one where I would call the acoustics livable. My first sale was a 1700 with the stock cooler since I didn't have any other AM4 compatible ones at the time and I still feel bad about selling it that way. It was just terrible. The 212 EVO seems to be within its thermal envelope for quiet cooling up to a stock 3700X, so I'd highly recommend one of those over the stock cooler. Going above the ~85W of a 3700X you should spring for a Fuma 2.

Log in

Don't have an account? Sign up now