Video Recording

Video recording on the ZenFone 7 Pro should be relatively well performing given it has the combination of OIS as well as a quite excellently performing EIS implementation which we’ve already seen on the ROG3. What remain to be seen is how video recording works with the new telephoto module as well as the new ultra-wide sensor.


Starting off with the main camera at 4K30, things actually aren’t looking too great for the ZenFone. The video show massive EIS jitter that’s massively distracting and looks quite bad with flashing details throughout the scene. We’re also seeing a fair bit of exposure fluctuations.

ASUS doesn’t expose the telephoto module to video recording at all in 4K resolution as the 8MP sensor simply isn’t sufficient for it, so you’d have to revert down to FHD to use it.

60fps recording doesn’t help much in terms of providing a stable image as the OIS and EIS are still fighting each other. What’s new here is that updated ultra-wide sensor now also enables 4K60 video recording.

Finally, 8K video is quite disappointing as there’s a big image crop, and there’s just worse dynamic range, beyond the impracticality of 800MB per minute recording. The positive here at least is that the ZenFone 7 has a microSD card slot.

It was a slightly windy day when I was recording these samples and unfortunately it looks like the microphone is quite prone in picking up wind noise.

Overall, video recording on the ZenFone 7 was quite disappointing due to the seemingly struggling EIS, and video quality suffers a lot.

Camera - Low Light Evaluation Conclusion & End Remarks
Comments Locked

31 Comments

View All Comments

  • JfromImaginstuff - Tuesday, September 1, 2020 - link

    Seriously, doing away with the headphone jack in exchange for 5G. Might as well go with Samsung
  • s.yu - Tuesday, September 1, 2020 - link

    Yeah they say 5G antennas are small, sometimes they omit the fact that you need more than a dozen of them.
  • melgross - Tuesday, September 1, 2020 - link

    You need from three to five, depending on whether you’re using sub mm bands or not, not dozens.
  • Quantumz0d - Tuesday, September 1, 2020 - link

    It's 100% b.s LG V60 and Sony Xperia Mark II both of them are 5G and LG even has full U.S band support with mmWave technology as well and has a superior Audio performance from the standalone RFI shielded high end ESS9219 DAC chipset (ESS9218P was being featured in LG phones from V30 and up) and both of them have IP68 rating along with Qi charging too. The fact that Note 20 gets a full blown Silo for the S-Pen makes so fucking ground for these lying bastards. Removing jack is saving pennies and forcing them to buy accessories which also die out due to the Li-Ion technology.
  • 5j3rul3 - Tuesday, September 1, 2020 - link

    Can anyone describe how to understand the ∆E ITP and ∆E ITP LC value?

    I did use ∆E 2000 with Gamma 2.2 for long time, but even searching in google, the data just saying about Rec.2100, EOTF, PQ, HLG and ITU-R....

    I knew ∆E ITP is a part of Rec.2100 HDR...but, the info I really want to know is the relationship between ∆E ITP (LC) and real world.

    ∆E 2000 < 1:Great and almost perfect
    ∆E 2000 < 2:so hard to see the difference and it's good enough for professional users
    ∆E 2000 < 3:good for general users

    ∆E 2000 < 5:ok for general users but still has noticebal color difference
    ∆E 2000 > 7:esay to see the color difference

    Can ∆E ITP and ∆E ITP LC use those standards (0 ~ 1 ~ 2 ~ 3 ~ 5 ~ 7 ~)?
  • Andrei Frumusanu - Tuesday, September 1, 2020 - link

    dE ITP is a new standard that takes into account more modern reproduction formats such as HDR. Generally ITP is a little more sensitive than the 2000 standard to colour deviations: https://kb.portrait.com/help/about-deltae-e

    dE ITP LC as I use it in the new reviews is simply a luminance compensated value, meaning that the error value ignores the luminance error and only looks at hue and chromacity. This makes sense for example in this review here as the ZenFone is targeting a 2.4 gamma by default, however our measurements are against a 2.2 gamma target. So the dE LC values are always going to be lower since it ignoers that part of the colour inaccuracy.

    Under dE ITP of 1 it's imperceptible, under 3 it becomes acceptable when not viewed next to each other, and over 10 means it's horribly wrong.
  • 5j3rul3 - Thursday, September 3, 2020 - link

    Thank you @Andrei, the reply is really helpful!!!
    Now I can read the Calman's color calibration charts and info well based on that very useful knowledge, and easy to judge which device can provide great display quality.

    Two more things I was wondering in this article:
    1. The devices that Anandtech had reviewed such as Mate 20, iPhone XR, Xperia 1 even Surface Pro or XPS13, will get the updated display quality review based on the new delta ITP (LC) standard?
    2. ASUS ZenFone 7 Series has a telephoto camera that has very similar spec to HUAWEI and Honor devices' (OV8856, 1/4.4", 1 um, F2.2, 80 mm{, OIS}, with terrible PDAF). It brings 3X Optical Zoom to ASUS smartphone first time and I'm expecting the 3X OZ camera can shows on ZenFone 7 Pro's review. This will be interesting if we have a comparison between ZF7P, 1+7P, M30P, P30 those who having a 3X OZ camera.....is there any opportunity to see this kind of comparison?

    in the end, I really thank to AnandTech's great quality reviews!!!
  • shabby - Tuesday, September 1, 2020 - link

    "This is something that ASUS actively acknowledges as being a deliberate design choice so that that they could fit in more components and a larger battery"

    Did they forget about the headphone jack?
  • drexnx - Tuesday, September 1, 2020 - link

    >made phone huge for more components
    oh yeah we couldn't throw the 3.5mm jack in there, not enough room. The 5 gees, you know, they take up too much space.
  • Hamm Burger - Tuesday, September 1, 2020 - link

    I thought that the unexpectedly low battery life might be because this phone did mm-wave 5G. Bit no: having dug up the specs, the highest 5G frequency band it can handle is 3.3–4.2GHz.

Log in

Don't have an account? Sign up now