Concluding Remarks

Following on the trail of Skull Canyon and Hades Canyon, Intel's Ghost Canyon NUC (NUC9i9QNX) is the latest and greatest performance-oriented mini-PC to come out of the company. A love letter of sorts to enthusiasts who want it all in a mini-PC, it's improved on Intel's earlier designs in a number of ways, making it perhaps the best high-performance NUC yet. In particular, by putting in enough room for a standard PCIe video card – but without making the NUC itself so large that it ceases to be a small form factor PC – Intel has resolved the one issue that has always dogged these NUCs: these days the GPU will go out of date long before the CPU will. All of which has made for one of the most interesting SFF PCs we've looked at in some time.

Overall, Ghost Canyon has given us with the opportunity to evaluate a sub-5L SFF PC sporting a user-replaceable discrete GPU. Intel's specific review sample configuration has also allowed us to explore the effect of the PCIe link width on various GPU workloads and get an idea of the increased responsiveness of the system when the primary storage drive is directly attached to the CPU and not bottlenecked by the DMI link. The pros and cons of the NUC9i9QNX are summarized below:

Pros:

  • The NUC 9 Extreme Kits are completely unique systems unparalleled in terms of performance potential in the sub-5L chassis volume category
  • The system design of the NUC9i9QNX allows for a sustained 65W processor package power dissipation, ensuring that workloads can take full advantage of all eight physical cores at good clock rates
  • The current NUC 9 Extreme Kits cover all bases in terms of I/O for almost every market segment, with the Compute Element alone providing more I/O capabilities compared to any other off-the-shelf SFF PC currently in the market
  • The Wi-Fi antenna pigtail connectors on the Compute Element are vastly improved compared to the previous NUC boards. The shifting of the coaxial receptacle connector to the MMCX Micromate style makes it easier to affix and have a more secure connection to the board as well as the chassis.
  • The components of the NUC 9 Extreme Kits can be upgraded independent of each other. The discrete GPU / PCIe add-in cards make up a significant chunk of the upgrades made to a desktop PC over its lifetime. The Compute Element initiative makes that a simple affair
  • The NUC 9 Extreme Kits belongs to the rare breed of SFF PCs that support switchable graphics. For example, all six display outputs from the Hades Canyon NUC are driven by the Radeon GPU, and the case with the ZBOX MAGNUS SFF PCs is similar. The NUC9i9QNX allows simultaneous usage of display outputs from both the integrated GPU as well as the discrete one

Cons:

  • The cramming of a large number of components in a tight space throws challenges in cable management
  • The front I/O ports of the NUC 9 Extreme Kits are sourced off a hub chip on a separate daughterboard. The cable linking the Compute Element to the daughterboard may easily get unseated during dGPU installation, leading the hub to operate at USB 2.0 speeds (this was the case in our review sample until a full disassembly and reassembly was done. The process restored the advertised USB 3.1 Gen 2 operation)
  • Ease of installation has been a hallmark of all the NUC kits from Intel so far. The need to keep things as small as possible means that the NUC 9 Extreme Kits end up making some compromises in this aspect. In particular, scenarios where a discrete GPU needs to be installed in the cramped space are a bit of challenge
  • Long-term thermals in dusty environments may be of concern. Quick cleaning access to the fan in the Compute Element is not available when a discrete GPU is installed
  • The 35W+ idle power consumption of the NUC9i9QNX review configuration is a tad too high for traditional NUC enthusiasts used to sub-10W idling numbers (even accounting for a discrete GPU in the mix)
  • The x8 vs. x16 PCIe link width tradeoff for the discrete GPU is a tough choice to make. With the current configuration of the NUC 9 Extreme Kits, we either get increased system responsiveness or better performance for GPU compute workloads, but not both at the same time

The Ghost Canyon NUC9i9QNX is a SFF enthusiast's dream come true. The NUC 9 Extreme Kits completely re-define the standard for other SFF PCs in the market. Beyond the product itself, the ecosystem that Intel is slowly developing around the Compute Element initiative holds importance in the longer term. Getting add-in card vendors to design for a compact chassis with well-defined requirements is a great first step. Moving forward, we would like to see some innovation around power delivery from the PSU to various build components. If we were to be given a choice of one thing that could be fixed in the NUC 9 Extreme kits, it is the elimination of the sea of PSU cables and the associated volume requirements / management headache.

The NUC9i9QNX review sample configuration allowed us to explore the benefits of attaching Optane storage directly to the CPU without the DMI limitations. However, we also saw that the operation of the GPU in x8 mode instead of x16 resulted in noticable penalties for GPU-intensive workstation workloads. Fortunately, gaming workloads were much milder, and only saw a difference of a few FPS. These two sets of observations make us yearn for Thunderbolt 3 and M.2 PCIe x4 ports directly attached to the CPU in addition to dedicating a x16 link for the GPU. An upgrade of the gigabit ports to NBASE-T would also be welcome. Some items in this wish-list are already in Intel's future roadmap. Hopefully, we will be seeing all these in future Compute Elements. The initiative replaces the socketed CPU currently identified as the core of a DIY desktop upgrade with an 'add-in card' form-factor Compute Element.


Discrete GPUs in SFF PCs - The NUC9i9QNX (L) and the Zotac ZBOX MAGNUS EK71080 (R)

The OEM perspective is also an interesting aspect. Prior to the launch of the first NUC UCFF PC, vendors like Zotac had been playing around with slightly larger mini-PCs such as the MAG-ND01 (a 7in x 7in board compared to the NUC's 4in x 4in size). The launch of the Ghost Canyon NUC kits reminds us of the same. Zotac was one of the first vendors to put a discrete user-replaceable GPU in a ~5L chassis in the ZBOX MAGNUS EK71080 (though they didn't advertise the user-replaceable part to end-users). Intel has now managed to integrate similar capabilities in a more compact chassis.

In both the original NUC and the current Compute Element initiative, it has come down to Intel to take a proof-of-concept from one of its OEM partners and develop it along with the ecosystem necessary to make the product take off in the market. The emergence of the NUC enabled vendors like ASUS, MSI, ASRock, and Zotac to create and widely market their own UCFF systems.

But if we're to repeat that here, then in the context of the Compute Element initiative, what role would such vendors have? We have already seen ASUS create an add-in card specifically catering to the NUC 9 Extreme Kits. GIGABYTE and MSI apparently have similar GPU cards in the pipeline. Many chassis vendors have also signed up to create Compute Element-compatible cases. However, it remains to be seen whether board and system vendors like ASRock and Zotac plan to create their own Compute Element-like products and whether they would be able to take advantage of the ecosystem that Intel is developing. As an example, the current Compute Elements don't have a NBASE-T port. It could be interesting if Intel allows its partners to create their own Compute Element with a NBASE-T port, or, say, a USB 3.1 Gen 2x2 port. When Intel shifts to NBASE-T in their own Compute Element lineup, Intel's partners could offer 10GBASE-T or additional Thunderbolt ports. Or, to dream boldy, perhaps an AMD Renoir-based Compute Element in the near term from these vendors?

Overall, the great performance profile of the NUC9i9QNX is only a small part of the equation. The NUC demonstrates Intel's vision for the bulk of the desktop PC market moving forward, albeit in a product that's premium in everything from performance to build to pricing. The latter of those suits Intel for now, but it is almost certainly leaving a much larger market unserved.

Currently, the lowest-priced Ghost Canyon board is the $664 NUC9i5QNB, while the $1553 NUC9i9QNX we looked at today uses the $1274 NUC9i9QNB board. We can totally imagine a user buying a Ghost Canyon kit chassis with a lower performance Compute Element (at, say, $300 to $500) and moving to a higher performance Compute Element a year or two down the line. In that context, we believe Intel (or its partners) should start catering to a wider range of price points. Assuming that Intel can build upon upon its initial success with the Compute Element initiative, the future of the desktop PC market does look bright.

 
Miscellaneous Aspects: Storage Performance
Comments Locked

109 Comments

View All Comments

  • buckiller - Thursday, April 16, 2020 - link

    Power pig. Hades Canyon was great, but this is hot trash, relative to expectations set by last-gen and perf/power capabilities that are possible today.

    > The Ghost Canyon NUC9i9QNX is a SFF enthusiast's dream come true.

    Ooph. Hardly.
  • Dolda2000 - Thursday, April 16, 2020 - link

    I have to admit that I still don't really see the point of this system. It seems that its main gimmick is the fact that what is essentially the motherboard plugs into a PCIe riser card. That's fine and useful and all, but PCIe riser boards and cables are nothing new, and I don't really see what this does that hasn't already been doable for quite some time. You can replace the compute element? Sure, but being able to replace motherboards is nothing new to most form factors. Please do enlighten me if I'm missing something.
  • Dragonstongue - Thursday, April 16, 2020 - link

    the series adds the ability for end-users to add a standard PCIe video card to the system system.

    to the system's system ... or just to the system..

    as for folks complain about the price, CPU alone is ~580 USD .. RTX 2070 mini ~539

    so there is over $1k right there

    I personally wouldn't be buying NUC "overall" based on should be Ryzen A and B absolutely not given seems Intel is "up to their same old BS tricks" via "preventing" folks from offering AMD based options available...
  • Destoya - Thursday, April 16, 2020 - link

    $580 CPU, you have to be kidding. Nobody, including OEMs, pays the tray MSRP intel has listed.

    If you want to look at it in terms of value, it has the same performance as a Ryzen 3600 ($175)...
  • Deicidium369 - Thursday, April 16, 2020 - link

    First off, there are no OEMs, it is single source Intel. I love Intel NUCs - not sure what the use case for this model is.
  • Namisecond - Friday, April 17, 2020 - link

    I don't think Intel manufactures those CPU cards (soldered BGA CPUs). They're probably integrated by a 3rd party OEM like Foxxcon. It's one thing to have engineering samples, but for Intel to step into the motherboard manufacturing game requires a lot of capital resources...unless the NUC parts are actually going to be made at Intel's engineering labs...If it's a production run in the 10Ks...that just might be feasible.
  • Deicidium369 - Friday, April 17, 2020 - link

    And like I said there are no OEMs available for you to buy from - single source - Intel. I thought I saw something a few years ago about possibly PNY - I know they do the Nvidia branded graphics cards.
  • BlazingDragon - Thursday, April 16, 2020 - link

    The article is misleading... and very Intel biased, IMHO.

    The ~$1500 USD price is for the i9 barebones kit only... just compute element [w/CPU], daughter board and PSU - i.e. not including a GPU, DRAM memory or SSD - that's why it's so outlandish...

    Good ITX m/board & Ryzen 3900x CPU, plus really nice case and PSU is << $900 USD.
  • Deicidium369 - Thursday, April 16, 2020 - link

    So a review of a product from Intel is very Intel biased.... That has to be a huge conspira-plot
  • BlazingDragon - Thursday, April 16, 2020 - link

    A review of anything can be positive or negative on that thing... and is unbiased if it seems balanced and fair in that criticism [be it positive or negative].
    If said article seems to over exaggerate the positives, and/or misrepresent them, and miss out or under call some of the negatives, then yes, it's biased... and IMHO, that's exactly what this article does...

Log in

Don't have an account? Sign up now