Camera Video Recording

Video recording have traditionally been a great weakness for Huawei, and the Mate 20’s feature the same type of issue that also plagued past Mate and P-series phones: the lack of OIS on the main camera modules. Furthermore, I was surprised to see that the video encoding block of the Kirin 980 caps out at 4K30, far lower than the competition from Qualcomm and Samsung.

Because the Mate 20’s feature wide-angle camera modules, this essentially doubles the amount of video samples we have to analyse. In terms of recording modes Huawei offers a slew of resolution from 720p to 4K30 – we’ll be limiting ourselves to the more popular 1080p30, 1080p60 and 4K30 modes. Video recording can be done either in H264, or H265, and the phone defaults to H264 for better file compatibility.

Mate 20 Pro:          

Mate 20:        

On both the Mate 20 and Mate 20 Pro, the one thing that immediately stands out from past Huawei devices is that the video is a lot more stable. Both in 1080p30 and 4K30 (in which previously EIS wasn’t available on the Kirin 970), we see some really good results considering the fact that the phones don’t have OIS. Here Huawei and HiSilicon are obviously using a different EIS algorithm that is much more performant, and the phone actually this time around doesn’t let you disable it. What is interesting to see is that here and there there’s still a jutter in the image, and when this happens we see the very edges of the video sometime warp for a few frames. This is an indication that the EIS algorithm is quite lax in following the camera frame, and in sudden movements tries to compensate and stabilize the recorded video frame by warping the existing camera frame along the edges when necessary. The only real negative of this implementation is that the actual video recording is delayed by a split second, something that plainly visible when panning around – in practical terms this shouldn’t be an issue.

Where things break down is in the 60fps mode: Here there’s no stabilisation and the result is what you’d expect from a non-OIS phone. I do find it weird that Huawei stabilises 4K30, but not 1080p60, as the larger resolution mode should in theory represent a more difficult workload. Here it’s likely that the new EIS is latency rather than throughput bound at some point in the pipeline, either by the sensors, or maybe even on the SoC side.

Video recording in 60fps is also not optimal, here I think Huawei was far too conservative in terms of video encoding bitrate as the resulting video is of much less quality than the 1080p30 mode. Also weird is that in 60fps mode, the phone will now do to the telephoto lens, only allowing digital zoom. However, switching over to the wide angle lens works.

4K30 is of great quality on both phones: This is an immense upgrade compared to the previous generation Huawei devices, and although it doesn’t quite match the quality of say the recent iPhone XS’, video recording is no longer a thorn in the side of the phones.

Recording video on the wide angle lenses is a great experience: It feels a bit less stable than o the primary lens (The EIS has more actual distance to compensate), but overall this is something that I’ve been a great fan of in LG phones, and should be definitely something that I recommend many users to try out.

Exposure and dynamic range is good on both phones and both modules, again something that’s seen immense upgrades compared to past Kirin 970 devices. It’s only when switching between the modules that it seems like it’s necessary to readjust the exposure sometimes. In terms of switching between the modules, Huawei is still a bit slow in this regard. Apple and other Snapdragon devices are able to do this almost instantly, however it still takes a few seconds for the Mate 20’s, especially switching to the zoom modules.

Overall, Huawei’s video recording quality on the Mate 20’s has seen a significant jump. The most glaring issues of stabilisation and lack of dynamic range (HDR recording) have been mostly fixed, and while it’s still not quite the best of the best, the end result is now no longer a big negative for the phones.

Camera - Low Light Evaluation Conclusion & End Remarks
Comments Locked

141 Comments

View All Comments

  • name99 - Friday, November 16, 2018 - link

    Andrei you are concentrating on the wrong thing. I don't care about the inadequacies of GB4's memory bandwidth test, or the device uncore, I care about the DRAM part of this.

    I understand you and anomouse are both claiming that LPDDR4-2133 means 4266 MT/s.
    OK, if that's true it's a dumb naming convention, but whatever. The point is, this claim goes directly against the entire thrust of the anandtech DDR5 article from a few days ago that I keep referring to, which states very clearly that something like DDR4-3200 means 3200MT/s

    THAT is the discrepancy I am trying to resolve.
  • ternnence - Friday, November 16, 2018 - link

    name99 , for mobile,LPDDR4x has 4266 spec , however desktop DDR4 rarely could get such frequency. So it is not LPDDR4-2133 has 4266MT/s, it is LPDDR4-4266 has 4266MT/s
  • ternnence - Friday, November 16, 2018 - link

    FYI,https://www.samsung.com/semiconductor/dram/lpddr4x... you could check this site.
  • name99 - Friday, November 16, 2018 - link

    FWIW wikipedia sees things the same way saying that
    https://en.wikipedia.org/wiki/DDR4_SDRAM
    eg DDR4-2133 means 2133MT/s

    This follows the exact same pattern as all previous SDRAM numbering. Up to DDR3 the multiplier was 2 (DDR), 4(DDR2) or 8(DDR3); with DDR4 the multiplier stays at 8 but the base clock doubles so from min of 100MHz it's now min of 200MHz.

    But these are internal details; the part that matters is that most authorities seem to agree that DDR4-2133 means 2133MT/s, each transaction normally 64-bits wide.

    Now there are SOME people claiming no, DDR4-2133 means 4266 MT/s
    - https://www.androidauthority.com/lpddr4-everything...
    claims this (but couches the claim is so much nonsensical techno-double-speak that I don't especially trust them)
    - so do you and anonomouse.

    So, like I said, WTF is going on here? We have a large pool of sources saying the sky is blue, and a different pool insisting that, no, the sky is green.
  • anonomouse - Friday, November 16, 2018 - link

    I never claimed that DDR4-2133 means 4266MT/s. I am instead claiming that there is no LPDDR4-2133.
  • anonomouse - Friday, November 16, 2018 - link

    I think the discrepancy here is just that you/they are mixing the naming conventions. DDR4-3200 means 3200MT/s. After an admittedly brief and cursory search, I don't see any references to Micron using the term LPDDR4-2133. I instead see every indication that they have LPDDR4 running at 2133MHz. Perhaps people here and there are mixing up the terminology, but when in doubt may as well just look at the actual memory clock or bandwidth being listed as that's ultimately what's importantly.
  • name99 - Friday, November 16, 2018 - link

    Yeah, I think you are correct. After looking in a few different places I think the following are all true:
    - The DDR4 guys tend to talk about MT/s and give the sorts of numbers I gave
    - The LPDDR4 guys tend to talk about Mb/s per pin (same as MT/s, but just shows a different culture) and tend to be working with substantially higher numbers.

    I *THINK* (corrections welcome) that
    (a) the way LPDDR4 is mounted (no DIMMs and sockets, rather it's direct mounting, either on the SoC as PoP, or extremely close to it on a dedicated substrate), allows for substantially higher frequencies than DDR4.
    (b) one's natural instinct (mine, and likely other people's) is that "of course DDR4 runs faster [fewer power concerns, etc]" so when you see LPDDR4 running faster (at say "4266") you assume this has to mean some sort of "silent" multiplication by 2, and what's actually meant is the equivalent of DDR4-2133 at 2133MT/s.
    (c) It certainly doesn't help that Micron at least is calling the 4266MT/s LPDDR4 as having a "2133MHz clock". I have no idea what that is supposed to mean given that the DDR4 "clock" runs at 1/8th transaction speed, so for DDR4 the clock of a 4266MT/s device would be 533MHz.

    So I think we have established that the actual speeds ARE 4266MT/s (or so) for LPDDR4.
    Left unresolved
    - these are generally higher than DDR4? Meaning that, sooner or later, PC users are going to have to choose between flexible RAM (DIMMs and sockets) or high speed RAM (PoP mounting, or superclose to the SoC on a substrate --- look at the A12X)?

    - Why is Micron calling something like LPDDR4-4266 as having a 2133MH clock? What does that refer to? I would assume that, like normal DDRx, the "low frequency clock" (what I've said would be 533MHz) is the speed for control transactions, and the 8x speed (4266Mb/s per pin) is the speed for bulk data flow?
  • ternnence - Friday, November 16, 2018 - link

    where do you get this "Micron lists their LPDDR4, for example, as LPDDR4-2133, NOT as LPDDR4-4266?"? just check Micron official site, they mark LPDDR4-4266, not LPDDR4-2133, to their 2133MHz ram.
  • ternnence - Friday, November 16, 2018 - link

    ddr means double data rate. 2133MH equals ram operates 2133 per second. but one operate produce two data output. MT/s equals million transfer per second. so LPDDR4-4266= 4266 million transfer per second = 2133 million Hz
  • name99 - Friday, November 16, 2018 - link

    The Micron datasheets, for example, numdram.pdf,
    https://www.micron.com/~/media/documents/products/...
    do exactly this.

Log in

Don't have an account? Sign up now