Battery Life

The iPhone XS comes with a 2658mAh/10.13Wh battery, while the XS Max has a capacity of 3174mAh/12.08Wh. Again, it’s to be noted that although both phones are quite large form-factor devices by now, Apple’s battery density still largely lags behind the competition. While yes, it’s true that the XS Max’ battery is the biggest that Apple has ever used, it still pales in comparison to the 3500 to 4000mAh that other vendors now employ in the same form-factor.

As we saw in the SPEC analysis, the one advantage that Apple has is an enormous lead in terms of power efficiency of its SoC, which largely makes up for any gap in the battery capacity deficit.

Our web browsing test is a mixed-to-heavy workload that iterates through a set of popular webpages that are hosted on our server. The test loads a web page, pauses, scrolls through it, pauses, and then continues to the next in the set, repeating all over when done. Brightness is fixed at 200cd/m².

Web Browsing Battery Life 2016 (WiFi)

The iPhone XS saw a very slight degradation compared to the iPhone X in our test. The 19 minute deficit isn’t terrible, but it does come at a surprise given that Apple had promised improved battery life for the new model. What’s happening is that likely our test is a tad heavier in its workload than what Apple and many other vendors internally test to advertise as the daily battery life of their devices.

The iPhone XS Max came in at 10.3h. Again while this is still good, it’s a degradation over the 11.83h of the iPhone 8 Plus. Here it’s easier to rationalise the difference; the OLED screen of the XS Max is just more power hungry and also has a larger area than the iPhone 8 Plus. Here the increased battery capacity isn’t enough to counteract the panel’s increased needs.

As to why the iPhone XS saw a degradation over the X, I’m not too sure. I did rerun the test on the iPhone X to make sure iOS12 hadn’t impacted the devices – and I got a runtime just 10 minutes lower than what I had tested on the iPhone X back around in January, so the iOS upgrade certainly doesn’t seem to have affected the battery life.

It should be relatively safe to assume that the new A12 should be more efficient in its workloads, even with the increased performance that it brings. One thing that we can’t really verify is the power efficiency at intermediate performance states, as that’s also where CPUs perform a lot of their work at.

We also have to keep in mind the connectivity factor: the new iPhone’s seems to sport a new Broadcom BCM4377 WiFi combo chip which we don’t know much about. Most importantly the new XS have also switched over from a Qualcomm baseband (in our test unit of the iPhone X) to a new Intel XMM7560 baseband.

I’ve generally given up on LTE testing after a few years ago I had run into some serious issues regarding a misconfiguration of my mobile carriers’ baseband stations as they did not have CDRX enabled. This caused an almost 20-30% battery life degradation on Huawei’s devices – and if I hadn’t debugged the issue with HiSilicon I’d probably be none the wiser. Fact is, cellular battery life testing is a lot harder than one would think, and without having a controlled environment, I’m very hesitant to resume cellular battery life testing.

That being said, I will revisit the iPhone X vs iPhone XS battery life topic while on LTE over the weekend and post an update to the review.

Overall, the battery life of the iPhone XS and XS Max are good – they don’t quite reach Apple’s claimed improvements, but that also just might be something that will vary from use-case to use-case.

Display Measurement & Power Camera - Daylight Evaluation: Zoom and Scenic
Comments Locked

253 Comments

View All Comments

  • zepi - Saturday, October 6, 2018 - link

    Otherwise a nice idea, but Datacenter CPU-market is too little to be interesting for Apple, as crazy as it is.

    Intel makes about $5b/quarter selling Xeons and other Datacenter stuff.

    Apple makes some $50B. I don't think they can waste chip-development resources to design something for such a little "niche".
  • tipoo - Thursday, October 18, 2018 - link


    Well, it would be largely reusing the R&D they already do for iOS chips, making the high performance cores is the hardest part, scaling them up to more cores would be a fraction the work.
  • varase - Tuesday, October 23, 2018 - link

    The Enterprise server business is already a crowded field, and it's not really something Apple has any expertise with.

    In Apple terms, it's not like there's a huge profit potential there, even if they were successful.

    Why put all that effort into learning, when most of their income comes from a portable consumer device they first released in 2007?
  • iwod - Saturday, October 6, 2018 - link

    What are the other die area used for? The labels only has ~half of the die. I could add image signal processing, video encode and decode if that is not included in GPU. Some FPGA we know Apple had included in their SoC. But all that accounted that is likely less than 25% of that due space. What about the other 25%?
  • Glaurung - Sunday, October 7, 2018 - link

    Hardware accelerators for anything and everything that can be hardware accelerated.

    Plus the "secure enclave" is also on there somewhere - a fenced off, cut down SOC within the SOC for handling logins/unlocking and other security stuff.
  • Antony Newman - Sunday, October 7, 2018 - link

    Andrei - This is an awesome review. Do you think Apple could roll out a low end laptop with 6 Vortex cores - or are there still SoC design areas that Apple still needs to address?

    AJ
  • Constructor - Sunday, October 7, 2018 - link

    I'm not Andrei, but my speculation on this would be:

    • It would make no sense to start with the weakest Macs because that would put the transition to Apple's own CPUs in a bad light from the start. As in the Intel transition 12 years ago they would need to start with the middle of their lineup (with iMacs and MacBook Pros) in order to demonstrate the strength of the new CPU platform and to motivate software developers to jump on board, including actually working on the new machines full time if possible.

    • They would need to have an emulation infrastructure for Intel legacy code in place like they did with Rosetta back then (also for Windows/Linux VMs!). And even in emulation that legacy code cannot be much slower than natively on then-current Intel machines, so their own CPUs already need to be a good bit faster than the corresponding Intel ones at the time in order to compensate for most of the emulation cost.

    • As in 2006, this would have a significant impact on macOS so at announcement they would need to push at least developer versions of the new macOS to developers. Back in 2006 they had Intel-based developer systems ready before the actual Intel Macs came out – this time they could actually provide a macOS developer version for the then top-of-the-line iPads until the first ARM-based Macs were available (which already support Blutooth keyboards now and could then just support Bluetooth mice and trackpads as well). But this also means that as back then, they would need to announce the transition at WWDC to explain it all and to get the developers into the boat.

    • Of course Apple would need to build desktop/notebook capable versions of their CPUs with all the necessary infrastructure (PCIe, multiple USB, Thunderbolt) but on the other hand they'd have more power and active cooling to work with, so they could go to more big cores and to higher clock speeds.

    Again: This is sheer speculation, but the signs are accumulating that something this that may indeed be in the cards with Intel stagnating and Apple still plowing ahead.

    I just don't think that it would be practical to put the current level of Apple CPUs into a Mac just like that even though from sheer CPU performance it looks feasible. These transitions have always been a massive undertaking and can't just be shot from the hip, even though the nominal performance seems almost there right now.
  • Constructor - Sunday, October 7, 2018 - link

    Oops – this forum insists on putting italics into separate lines. Oh well.
  • ex2bot - Sunday, October 7, 2018 - link

    Not to mention they’d have to maintain two processor architectures for an extended period. By that, I mean, I doubt they’d transition high-end Macs for a long, long time to avoid angering pros... again.
  • serendip - Monday, October 8, 2018 - link

    A real left field move would be for Apple to release a MacOS tablet running ARM, like a Qualcomm Windows tablet. I wouldn't rule it out considering how Apple went from a single product for the iPhone and iPad to making multiple sizes.

Log in

Don't have an account? Sign up now