Conclusions

The Samsung PM981 looks poised to sit as a potential base for a 980 Evo equivalent in 2018. It offers a healthy generational improvement to performance due to the combination of a new controller and Samsung's new 64-layer 3D TLC NAND. The previous generation (PM961 for OEMs, 960 EVO for retail) was already the fastest TLC-based client SSD, and it outperforms many MLC-based SSDs. By improving on that level of performance, the PM981 has caught up to or surpassed the MLC-based 96x drives on many tests, setting new records not just for TLC-based drives but for client SSDs as a whole.

The Samsung PM981 offers performance that is more well-rounded than any other TLC-based SSD. The faster 1TB capacity is almost completely immune to the typical pitfalls of using TLC NAND; it is almost impossible for a real-world workload to trigger the kind of nasty slowdown that typically indicates a full SLC write cache or something else causing a lot of background work for the SSD controller.

The 512GB PM981 doesn't set records except for within its own product class, but it too is a meaningful improvement over its predecessors. The 512GB model doesn't handle heavy workloads quite as well as the larger model, but it still beats any other TLC-based option.

Both drives raise the bar for how well TLC SSDs should perform. On lighter workloads, they set a new standard that even MLC-based drives have trouble reaching. For almost everyone, the fact that the PM981 uses TLC NAND is no cause for concern because the performance defies the expectations for TLC SSDs. They are obviously great choices for OEMs to offer in high-performing notebook computers, depending on the power consumption, which we will test when our testing equipment is fixed.

Enthusiasts will have to wait until CES in January or some later event to hear about Samsung's next SSDs based on the PM981, which is likely to be called the 980 Evo if it follows previous naming conventions. These PM981 drives, if you can source them on the grey market, may be a reasonable choice for impatient system builders wanting to put the latest TLC into their systems today. As always though, OEM drives purchased on the grey market come with no warranty from the manufacturer and firmware updates may be hard to come by, so they aren't for everyone.

 

Mixed Read/Write Performance
Comments Locked

53 Comments

View All Comments

  • mapesdhs - Thursday, November 30, 2017 - link

    And Drazick, what do you mean by 2.5" drives? If you're referring to SATA, well then no, it's already at its limit of 550MB/sec, and producing something akin to SATA4 would be pointless when it's also hobbled by the old AHCI protocol.

    Also, "don't like" is an emotional response; what's your evidence and argument that they're a bad product somehow? Have you used them?
  • WithoutWeakness - Thursday, November 30, 2017 - link

    By 2.5" drives I'm sure he means the same form factor as standard SATA 2.5" SSDs except using a newer, faster connection just like the U.2 connectors that Dan mentioned. We definitely hit the limit of what SATA 3 can deliver and it would be nice to have a new standard that can leverage PCIe NVMe SSDs in a form factor that allows us to use cables to put drives elsewhere in a case for better layouts and airflow. U.2 was supposed to be that connector but there are basically no drives that support the standard and very few boards with more than 1 U.2 port. There are a few adapters on the market that allow you to install an M.2 drive into a 2.5" enclosure with a U.2 connector on it but until motherboards have more than 1 U.2 port it won't be a real replacement for the ubiquity of SATA.
  • msabercr - Friday, December 1, 2017 - link

    Actually there are m.2 to U.2 connectors readily available from most MB vendors, and 7mm U.2 datacenter drives are starting to become a thing. See Intel SSD DC P4501. I wouldn't be surprised if AIC disappears after too long. Limiting the power draw would be the major hurdle in creating such drives but it's not impossible. The EDSFF is going to pave the way for many high density compact form factors for NVMe moving forward.
  • sleeplessclassics - Thursday, November 30, 2017 - link

    One more thing which I think will be different when these drives are launched as retail devices is the driver support for Phoenix controller. While, it is always difficult to pinpoint the exact bottlenecks on such bleeding edge technology, I think a driver that is better optimized for Phoenix controller will definitely produce better results (ceteris paribus)

    Also, there have been rumors of QLC-Nand. If that is true, that could be the differentiator between EVO and PRO series.
  • romrunning - Thursday, November 30, 2017 - link

    Yes - QLC... more latency, lower endurance, slower writes - what's not to like? :-S
  • Spunjji - Thursday, November 30, 2017 - link

    Lower price..? Higher densities and increased production? That's what it's all about.

    If 3D QLC performs like 2D TLC then it'll do just fine for mass storage.
  • mapesdhs - Thursday, November 30, 2017 - link

    Good point given the way in which most products seem to be abe to tolerate far more writes than for which they're officially rated, in which case it's likely most users will want something newer long before a QLC product's endurance has been reached. If one is doing something that will drain the endurance a lot faster, then one should be using something more suitable anyway.
  • romrunning - Thursday, November 30, 2017 - link

    Sure, but QLC is just like TLC - once you force it on enough people and you say it's "good enough", then the higher-performing but costlier flash (like SLC/MLC) slowly is removed from the product portfolio. I'm not in favor of these race-to-the-bottom "advances", just to reduce the price a bit for hte consumer but more for the mfg. You may get a slight bump in capacity, but for me, the performance/endurance trade-off with a slight reduction in price isn't worth it.

    Now, I suppose it doesn't matter anymore to me since I'll still be buying the 960 Pro until the Optane 900p reaches better pricing. But the slippery slope you encounter is that new product "advances" are usually better when comapred to to the "current" state of tech. If the current standard is QLC, then the new "improvement" might only be raising it to levels that SLC/MLC were at previously. So the possibility is that it may not be that much of an improvement.
  • bcronce - Thursday, November 30, 2017 - link

    For read heavy mass storage drives, slower writes is fine. SSDs are getting fast enough that the IO or CPU is the bottleneck. Higher read latency for small queues will hurt performance, but not by a whole lot.

    The endurance is only an issue if you re-write your data a lot, like a paging file or a game drive that sees a lot of updates. A relatively static mass-media drive will probably be just fine.
  • sleeplessclassics - Thursday, November 30, 2017 - link

    Latency can (till some extent) be handled with a bigger dram buffer. Also, controllers are the key here and not the NAND type. Today, even TLC can perform better than MLC/SLC just 2-3 generations ago due to better controllers.

    A couple of years ago and even last year, 500GB ssd was around $80. If the prices were sane, 64-layer 3D TLC would have been below $50 for sure.
    And 96-layer QLC can give real competition to the HDDs.

    As for lower endurance, that can be handled by slightly higher provisioning and slower writes....well they would be okay for 95% of the mainstream users.
    Enthusiasts have optane and Z-NAND

Log in

Don't have an account? Sign up now