Power Management

Real-world client storage workloads leave SSDs idle most of the time, so the active power measurements presented earlier in this review only account for a small part of what determines a drive's suitability for battery-powered use. Especially under light use, the power efficiency of a SSD is determined mostly be how well it can save power when idle.

SATA SSDs are tested with SATA link power management disabled to measure their active idle power draw, and with it enabled for the deeper idle power consumption score and the idle wake-up latency test. Our testbed, like any ordinary desktop system, cannot trigger the deepest DevSleep idle state.

Idle power management for NVMe SSDs is far more complicated than for SATA SSDs. NVMe SSDs can support several different idle power states, and through the Autonomous Power State Transition (APST) feature the operating system can set a drive's policy for when to drop down to a lower power state. There is typically a tradeoff in that lower-power states take longer to enter and wake up from, so the choice about what power states to use may differ for desktop and notebooks.

Active idle is representative of a typical desktop, where none of the advanced PCIe or SATA link or NVMe power saving features are enabled and the drive is immediately ready to process new commands. The idle power consumption metric is measured with PCIe Active State Power Management L1.2 state and SATA Device-Initiated Power Management enabled and NVMe APST enabled.

Active Idle Power Consumption (No LPM)Idle Power Consumption

Drive capacity has little effect on idle power consumption. Active idle power draw comes down mostly to the choice of controller. The Phison S10 is the best, followed by Samsung's SSDs and then the HP S700 with the SM2258XT. The S700 Pro with its DRAM more than 100mW extra at idle.

With link power management enabled, the S700 Pro has good power savings but doesn't stand out from the crowd. The S700 apparently fails to engage the slumber power state and thus power doesn't go down at all. This makes the S700 a poor choice for mobile use, but this may simply be a firmware bug that could be fixed.

Idle Wake-Up Latency

The idle wake-up latency of the S700 is minimal, since it never actually enters a low-power state. The Phison S10 drives are by far the fastest to wake up from the slumber state, and the S700 Pro falls in the second tier of drives that wake up in less than 1ms.

Mixed Read/Write Performance Conclusion
Comments Locked

54 Comments

View All Comments

  • ddriver - Thursday, September 7, 2017 - link

    1.1 - SATA is OK for most tasks, there will be no perceivable difference to a NVME. Besides some NVME drives are almost as slow as SATA drives, such as the p600.

    1.2 - most boards come with a single M2, those that have more are very expensive, and require expensive CPUs to get actual PCIE lanes

    2 - because HP is paying
  • ddriver - Thursday, September 7, 2017 - link

    Even the most expensive mobos have at most 3 m2 slots, so if you want more than 3 SSDs, what do you do then? In contrast, even low end mobos come with at least 4 SATA ports.

    You can get some very decent speed from SSDs in raid 0, on top of the higher capacity, SATA ssds go as high as 4TB, m2 cap out at 2TB.
  • 8steve8 - Thursday, September 7, 2017 - link

    sure, but do you think most people who can't afford a higher end motherboard are buying more than one SSD for their system?
  • ddriver - Friday, September 8, 2017 - link

    It depends on what you need. You can save plenty on money on mobo and cpu and spend on much affordable sata ssds. Just because you may need to spend 1000$ on storage doesn't mean you have to be forced to spend another 1000 on cpu and mobo.

    A 2 TB evo will cost you 700$, the cheapest and "onlinest" 2TB m2 drive is 1200$ - over 70% more expensive. The mx300 is even cheaper - you can have a full 4 TB for less than 1200$.
  • yankeeDDL - Thursday, September 7, 2017 - link

    Loads of people. I have 3 SATA SSD on my PC and 2 laptops.
    M.2 is still much pricier, so only premium laptop use them, and I find it easier to buy a laptop with a regular HDD, and upgrade it to the SSD of my liking and size. SSD still carry a huge markup on many laptops, and in many cases you cannot even select one which is bigger than 128GB, which is preposterous.
  • sonny73n - Friday, September 8, 2017 - link

    I am still buying SATA SSDs for my OCed Sandy Bridge system. Have 3 SSDs in there but I'm considering a big one for storage.
  • evilspoons - Sunday, September 10, 2017 - link

    Yep, I've got a friggin GTX 1080 in my i7-2600k and a random collection of hard drives and SSDs populating pretty much every SATA port on my ASUS P8Z68-V PRO. M.2? Neato, but... what's that? Lol.

    Up next, I would not mind a nice ol' 2 TB SSD to put the majority of my Steam games on, but I really don't have $1400 CAD to special order an 850 Pro (or Evo). Both of which are SATA, good luck with anything over M.2... I think the 960 Pro is like $1700 CAD?
  • mapesdhs - Wednesday, September 13, 2017 - link

    To the both of you, just use an SM951 or SM961 on a PCIe adapter card. I get very good results with either model on my ASUS M4E, am about to move my main photo/video archive from a 500GB 850 EVO onto a 512GB SM961. I'm getting around 2GB/sec with the SM951, 3GB/sec with the SM961, and even more with SB-E mbds (3.5GB/sec on an R4E). In the UK where I am, the Akasa PCIe adapter card is only about 13 UKP, so the total cost is still less than mainstream SATA SSDs, though I did manage to get a 960 Pro 512GB for a good price for my R4E gaming setup.

    Also, the 950 Pro has its own boot ROM, so on older mbds you can use it as a boot drive via legacy BIOS settings. I know someone who's done this with their X79 and I plan on doing it with my own setups. Alas the 960 Pro does not have its own boot ROM so it can't be used in the same way by default. Other NVMe models also have their own boot ROM though, such as the Intel 750.

    Also, for ASUS X79 systems, there's a thread on the ROG site where a guy is posting modded BIOS files to allow various ASUS mbds to boot from any NVMe SSD, not just units like the 950 Pro. Thus, I plan on replacing my R4E's 850 Pro with a 960 Pro which was originally going to be just for game data alone.

    There's still plenty of life left in older mbds, much to the annoyance I'm sure of Intel and other vendors. :D Beats me though why Samsung didn't include a boot ROM in the 960, that was bizarre.

    PM/email me if you'd like screen captures of these SSDs being tested on various configs (so far mostly an M4E, R4E ans P9X79-E WS), ie. AS-SSD, CDM and Atto.

    Ian.
  • mapesdhs - Wednesday, September 13, 2017 - link

    Forgot to mention, I also plan on testing them with some P55 and X58 mbds, should be interesting, and perhaps a Striker II Extreme aswell if I have the time. Might try a couple of older AMD boards aswell, I have a few.
  • FunBunny2 - Friday, September 8, 2017 - link

    -- Who is buying SATA SSDs in 2017

    most computers, modulo gamers and stats and RDBMS, don't do much more than e-mail and web surfing. the home PC reached good enough a decade ago. swapping spinning rust for just about any NAND device gets you as much improvement as a new i7 machine. I guess the idle rich would choose the latter, but the rest of us just get a SSD.

Log in

Don't have an account? Sign up now