Random Read Performance

Our first test of random read performance uses very short bursts of operations issued one at a time with no queuing. The drives are given enough idle time between bursts to yield an overall duty cycle of 20%, so thermal throttling is impossible. Each burst consists of a total of 32MB of 4kB random reads, from a 16GB span of the disk. The total data read is 1GB.

Burst 4kB Random Read (Queue Depth 1)

The HP S700 Pro's QD1 burst random read performance is a bit slower than the ADATA SU800 except for the 128GB capacity, but overall the scores are fine for a budget SSD. The S700s all perform similarly and slightly ahead of Toshiba's OCZ VX500 (DRAMless with MLC) and the 128GB SU800.

 

Our sustained random read performance is similar to the random read test from our 2015 test suite: queue depths from 1 to 32 are tested, and the average performance and power efficiency across QD1, QD2 and QD4 are reported as the primary scores. Each queue depth is tested for one minute or 32GB of data transferred, whichever is shorter. After each queue depth is tested, the drive is given up to one minute to cool off so that the higher queue depths are unlikely to be affected by accumulated heat build-up. The individual read operations are again 4kB, and cover a 64GB span of the drive.

Sustained 4kB Random Read

On a longer test and with some higher queue depths, the HP S700 falls to last place, as expected of a DRAMless SSD. The larger two S700 Pros again come in just behind the SU800, while the 128GB S700 Pro beats the SU800 but doesn't match the planar TLC based PNY CS1311.

Sustained 4kB Random Read (Power Efficiency)

The power efficiency of the S700 is poor but they're not alone at the bottom of the chart. The larger two S700 Pros are about average.

The 120/128GB HP drives saturate around QD8, while the 250/256GB HPs show a little bit of performance improvement beyond QD16 and the 500/512GB HPs are still scaling up at the QD32 limit imposed by the SATA link. Unfortunately, none of them come close to the SATA throughput limit even at QD32.

Random Write Performance

Our test of random write burst performance is structured similarly to the random read burst test, but each burst is only 4MB and the total test length is 128MB. The 4kB random write operations are distributed over a 16GB span of the drive, and the operations are issued one at a time with no queuing.

Burst 4kB Random Write (Queue Depth 1)

The burst random write performance of the HP S700 Pro is above average at all capacities. The S700 is slowest, but even the 120GB is still more than half as fast as the fastest drive in this bunch.

 

As with the sustained random read test, our sustained 4kB random write test runs for up to one minute or 32GB per queue depth, covering a 64GB span of the drive and giving the drive up to 1 minute of idle time between queue depths to allow for write caches to be flushed and for the drive to cool down.

Sustained 4kB Random Write

On the longer random write test, the larger two HP S700 Pros maintain average performance while the smallest is at quite a disadvantage, but it's still faster than any other recent 128GB-class SATA SSD. (The 128GB Samsung 850 PRO is very fast, but was discontinued when Samsung migrated to 48-layer 3D NAND.) The 120GB S700 is extremely slow on this sustained test.

Sustained 4kB Random Write (Power Efficiency)

The larger two S700 Pros that offer decent performance also offer great power efficiency, and the smallest S700 Pro is great for its capacity class. The larger two S700s beat the planar TLC drive on efficiency but are otherwise unimpressive, and the 120GB S700's efficiency is little more than a tenth of the best SATA SSDs.

The 512GB S700 Pro's performance scales well from QD1 to QD4, then increases slowly through the rest of the test. The smaller capacities hit the limits of their SLC caches before the end of the test and performance gets much lower and less consistent. The S700s are slow and inefficient throughout the test, but do at least offer the lowest power consumption in absolute terms, hovering just above 1W.

AnandTech Storage Bench - Light Sequential Performance
Comments Locked

54 Comments

View All Comments

  • sonny73n - Friday, September 8, 2017 - link

    You should compare the 850 EVO with the BX300. I don't care whether the EVO has better controller but I will take a 2-bit per cell NAND over a 3-bit any day.
  • mapesdhs - Wednesday, September 13, 2017 - link

    I just keep picking up lightly used 840 Pro 256GB units, people have forgotten how good they were and still are. It's annoying they no longer appear in review charts. Even the Vertex4 and Vector are still good compared to modern models.
  • barleyguy - Friday, September 8, 2017 - link

    You seem to be comparing retail price to street price. HP has sales almost constantly. These might be $116 initially, but they'll be discounted very quickly to lower prices. I fully expect them to be competitive pricewise.
  • r3loaded - Thursday, September 7, 2017 - link

    Hurray, yet another 2017 SSD that gets utterly curbstomped by a Samsung SSD from 2015 on both performance and price.
  • 8steve8 - Thursday, September 7, 2017 - link

    1. Who is buying SATA SSDs in 2017
    2. Why is Anandtech putting so much effort into SATA SSDs in 2017
  • Billy Tallis - Thursday, September 7, 2017 - link

    I've yet to hear from a vendor that their volume of NVMe drives has even come close to matching their volume of SATA drives, for either the retail consumer market or the client OEM market. Even in the enterprise market, NVMe isn't close to killing off SATA and SAS yet.

    We have new technologies launching in SATA products like the Intel 545s and Western Digital's 3D NAND SSDs. SATA SSDs are still more cost effective than NVMe SSDs, and will be until there have been plenty of low-end NVMe controllers like Phison E8 and Silicon Motion SM2263 on the market for quite a while.
  • Elstar - Thursday, September 7, 2017 - link

    Also:
    1) most motherboards are still loaded with SATA connectors
    2) most motherboards have few if any NVMe connectors (other than traditional PCIe)
    3) SATA drives are often more friendly to "sneaker net" security.
  • 8steve8 - Thursday, September 7, 2017 - link

    yes, most motherboards have lots of SATA, but they also have a PCIe m.2 slot... hard to find one that doesn't.

    but who's buying SATA SSDs? It's an honest question.

    on newegg i see a $99 240GB m.2 NVMe SSD, so who would recommend this 256GB SATA drive with a retail price of $169?
  • bji - Friday, September 8, 2017 - link

    Nice straw man. Answer: nobody would buy either. They'd buy a $90 250GB Samsung EVO. I just did last night.
  • cfenton - Monday, September 11, 2017 - link

    Lot's of people don't have motherboards that support m.2. You're right that most new motherboards support m.2, but there are a whole lot of people out there with 2+ year old computers who might want more storage or a faster boot drive. SSDs, of any kind, still aren't common in many OEM products, especially at the low end. A SATA SSD is still going to beat the hell out of any HDD.

Log in

Don't have an account? Sign up now