3D XPoint Refresher

Intel's 3D XPoint memory technology is fundamentally very different from NAND flash. Intel has not clarified any more low-level details since their initial joint announcement with Micron of this technology, so our analysis from 2015 is still largely relevant. The industry consensus is that 3D XPoint is something along the lines of a phase change memory or conductive bridging resistive RAM, but we won't know for sure until third parties put 3D XPoint memory under an electron microscope.

Even without knowing the precise details, the high-level structure of 3D XPoint confers some significant advantages and disadvantages relative to NAND flash or DRAM. 3D XPoint can be read or written at the bit or word level, which greatly simplifies random access and wear leveling as compared to the multi-kB pages that NAND flash uses for read or program operations and the multi-MB blocks used for erase operations. Where DRAM requires a transistor for each memory cell, 3D XPoint isolates cells from each other by stacking them each in series with a diode-like selector. This frees up 3D XPoint to use a multi-layer structure, though not one that is as easy to manufacture as 3D NAND flash. This initial iteration of 3D XPoint uses just two layers and provides a per-die capacity of 128Gb, a step or two behind NAND flash but far ahead of the density of DRAM. 3D XPoint is currently storing just one bit per memory cell while today's NAND flash is mostly storing two or three bits per cell. Intel has indicated that the technology they are using, with sufficient R&D, can support more bits per cell to help raise density.

The general idea of a resistive memory cell paired with a selector and built at the intersections of word and bit lines is not unique to 3D XPoint memory. The term "crosspoint" has been used to describe several memory technologies with similar high-level architectures but different implementation details. As one Intel employee has explained, it is relatively easy to discover a material that exhibits hysteresis and thus has the potential to be used as a memory cell. The hard part is desiging a memory cell and selector that are fast, durable, and manufacturable at scale. The greatest value in Intel's 3D XPoint technology is not the high-level design but the specific materials and manufacturing methods that make it a practical invention. It has been noted by some analysts that the turning point for technologies such as 3D XPoint may very well be in the development in the selector itself, which is believed to be a Schottky diode or an ovonic selector.

In addition to the advantages that any resistive memory built on a crosspoint array can expect, Intel's 3D XPoint memory is supposed to offer substantially higher write endurance than NAND flash, and much lower read and write times. Intel has only quantified the low-level performance of 3D XPoint memory with rough order of magnitude comparisons against DRAM and NAND flash in general, so this test of the Optane SSD DC P4800X is the first chance to get some precise data. Unfortunately, we're only indirectly observing the capabilities of 3D XPoint, because the Optane SSD is still a PCIe SSD with a controller translating the block-oriented NVMe protocol and providing wear leveling.

The only other Optane product Intel has announced so far is another PCIe SSD, but on an entirely different scale: the Optane Memory product for consumers uses just one or two 3D XPoint chips and is intended to serve as a 32GB cache device accelerating access to a mechanical hard drive or slower SATA SSD. Next year Intel will start talking about putting 3D XPoint on DIMMs, and by then if not sooner we should have more low-level information about 3D XPoint technology.

Introduction Test Configurations
Comments Locked

117 Comments

View All Comments

  • ddriver - Friday, April 21, 2017 - link

    Then those reviews would show minuscule benefit of nvme and hypetane over a regular old ssd.
  • DrunkenDonkey - Friday, April 21, 2017 - link

    NVME yes, will show up that when you run that game on 960 pro it will take exactly same amount (-~1 sec) compared to old sata ssd. Octane however will show some 8 times faster and it will stick totally awesome in the graph. If you don't know what to look for, octane is not impressive and some new nvme ssd is actually very good compared to the old, both are untrue.
  • ianmills - Thursday, April 20, 2017 - link

    Loving how the "vertical axis units" were added after the graph for clarity. Great attention to detail Billy!
  • serendip - Thursday, April 20, 2017 - link

    How about power consumption? Could we start seeing similar hardware in tablets and phones in say, 5 years' time? We will still need DRAM for speed and low power consumption. XPoint would then make for a great system and caching drive, with slower and cheaper NAND being used for media storage, like how SSD + HDD setups are used now.
  • Ian Cutress - Friday, April 21, 2017 - link

    Literally the last two sentences in the review (and mentioned at other times):

    "Since our testing was remote, we have not yet even had the chance to look under the drives's heatsink, or measure the power efficiency of the Optane SSD and compare it against other SSDs. We are awaiting an opportunity to get a drive in hand, and expect some of the secrets under the hood to be exposed in due course as drives filter through the ecosystem."
  • random2 - Thursday, April 20, 2017 - link

    "so it is interesting to see where Intel is going to lay down its line in the sand."

    Mixed metaphor; "lay down your cards" or "draw a line in the sand"
  • iwod - Friday, April 21, 2017 - link

    What I really want to see, ( Not sure if Intel allows them to )
    Optane to put through all the test of SSD Bench. ( For Reference Only, and we would know how QD1 affect the benchmarks )
    And Power Consumption.
  • ddriver - Friday, April 21, 2017 - link

    ( Not sure if Intel allows them to )

    Most likely the review guidelines intel mandated for this are longer than the actual review ;)
  • Pork@III - Friday, April 21, 2017 - link

    $1520 for only 375GB...we not live in 2012. We live in 2017! If not to lie myself?
  • tuxRoller - Friday, April 21, 2017 - link

    "However it is worth noting that the Optane SSD only manages a passing score when the application uses asynchronous I/O APIs. Using simple synchronous write() system calls pushes the average latency up to 11-12µs"

    You mentioned "polling mode" for nvme was disabled, which is strange since that's been the default since ~4.5. Also, there are different types of polling modes, so, my hope is that the polling mode you are talking about is the new hybrid polling (introduced in 4.10, but possibly backported to your Ubuntu kernel). If not, then we know that xpoint is faster than the data you've gathered. Western Digital gave a talk at the recent Vault conference and discussed when it makes sense to poll vs reap.
    Polling ends up being about 1.3x faster (average latency) than waiting for the irq (4.5us vs 6us). If you went with one of the userspace drivers, polling ends up twice as fast, but that would take much more work to benchmark.
    So, considering that you're benchmarking the kinds of devices that this feature was designed for, and that we are interested in us latencies, what you've ended up benchmarking here was, to a greater extent than needed, the default kernel configuration.

    http://events.linuxfoundation.org/sites/events/fil...

Log in

Don't have an account? Sign up now