Mixed Random Read/Write Performance

The mixed random I/O benchmark starts with a pure read test and gradually increases the proportion of writes, finishing with pure writes. The queue depth is 3 for the entire test and each subtest lasts for 3 minutes, for a total test duration of 18 minutes. As with the pure random write test, this test is restricted to a 16GB span of the drive, which is empty save for the 16GB test file.

Iometer - Mixed 4KB Random Read/Write

The 600p was slower than the Crucial MX300 on random writes but faster at random reads. On the mixed random I/O test, they average out to a tie.

Iometer - Mixed 4KB Random Read/Write (Power)

Despite performing the same overall, the 600p used more than twice the power of the MX300. The SM2260 controller simply imposes far too much power overhead than is appropriate when paired with slow TLC NAND.

The 600p performs better as more writes are added in to the mix, but it doesn't spike in performance for the final all-writes phase of the test. This means its performance is much more balanced than many other drives that simply run up the score at the end.

Mixed Sequential Read/Write Performance

The mixed sequential access test covers the entire span of the drive and uses a queue depth of one. It starts with a pure read test and gradually increases the proportion of writes, finishing with pure writes. Each subtest lasts for 3 minutes, for a total test duration of 18 minutes. The drive is filled before the test starts.

Iometer - Mixed 128KB Sequential Read/Write

The faster-than-SATA read speeds of the 600p aren't enough to compensate for the poor write speeds, so it ends up scoring only slightly ahead of the budget SATA SSDs.

Iometer - Mixed 128KB Sequential Read/Write (Power)

There is a clear separation in power consumption between the SATA and PCIe SSDs. For once, the 600p is the lowest power PCIe SSD, but it is still the least efficient due to its low performance.

As expected, adding writes to the mix drags down performance, though there aren't enough writes in the 80/20 phase to have much of an impact yet. It is a hallmark of low-end SSDs to see performance stay low through the end of the test, while high-performance SSDs typically have a U-shaped performance curve here.

Sequential Performance ATTO, AS-SSD & Idle Power Consumption
Comments Locked

63 Comments

View All Comments

  • ddriver - Tuesday, November 22, 2016 - link

    A fool can dream James, a fool can dream...

    He also wants to live in a really big house made of cards and bathe in dry water, so his hair don't get wet :D
  • Kevin G - Wednesday, November 23, 2016 - link

    Conceptually a PCIe bridge/NVMe RAID controller could implement additional PCIe lanes on the drive side for RAID5/6 purposes. For example, 16 lanes to the bridge and six 4 lane slots on the other end. There is still the niche in the server space where reliability is king and having removable and redundant media is important. Granted, this niche is likely served better by U.2 for hot swap bays than M.2 but they'd use the same conceptual bridge/RAID chip proposed here.
  • vFunct - Wednesday, November 23, 2016 - link

    > However WHY would you want to do that when you could just go get an Intel P3520 2TB drive or for higher speed a P3700 2TB drive.

    Those are geared towards database applications (and great for it, as I use them), not media stores.

    Media stores are far more cost sensitive.
  • jjj - Tuesday, November 22, 2016 - link

    And this is why SSD makers should be forced to list QD1 perf numbers, it's getting ridiculous.
  • powerarmour - Tuesday, November 22, 2016 - link

    I hate TLC.
  • Notmyusualid - Tuesday, November 22, 2016 - link

    I'll second that.
  • ddriver - Tuesday, November 22, 2016 - link

    Then you will love QLC
  • BrokenCrayons - Wednesday, November 23, 2016 - link

    I'm not a huge fan either, but I was also reluctant to buy into MLC over much more durable SLC despite the cost and capacity implications. At this point, I'd like to see some of these newer, much more durable solid state memory technologies that are lurking in labs find their way into the wider world. Until then, TLC is cheap and "good enough" for relatively disposable consumer electronics, though I do keep a backup of my family photos and the books I've written...well, several backups since I'd hate to lose those things.
  • bug77 - Tuesday, November 22, 2016 - link

    The only thing that comes to mind is: why, intel, why?
  • milli - Tuesday, November 22, 2016 - link

    Did you test the MX300 with the original firmware or the new firmware?

Log in

Don't have an account? Sign up now