Sequential Read Performance

The sequential read test requests 128kB blocks and tests queue depths ranging from 1 to 32. The queue depth is doubled every three minutes, for a total test duration of 18 minutes. The test spans the entire drive, and the drive is filled before the test begins. The primary score we report is an average of performances at queue depths 1, 2 and 4, as client usage typically consists mostly of low queue depth operations.

Iometer - 128KB Sequential Read

The 2TB 960 Pro's low queue depth sequential read speed is about 300MB/s faster than the 950 Pro, once again giving Samsung the clear lead in performance and showing that the 960 Pro is significantly better than the 950 Pro where thermal limits are a factor.

Iometer - 128KB Sequential Read (Power)

The 960 Pro consumes more power than its predecessors, but given the high performance it is the most efficient drive for this workload.

The slight drop in performance beyond QD1 indicates that the 960 Pro is still thermally limited for most of this test, and that like the 950 Pro it may perform much better with a heatsink.

Sequential Write Performance

The sequential write test writes 128kB blocks and tests queue depths ranging from 1 to 32. The queue depth is doubled every three minutes, for a total test duration of 18 minutes. The test spans the entire drive, and the drive is filled before the test begins. The primary score we report is an average of performances at queue depths 1, 2 and 4, as client usage typically consists mostly of low queue depth operations.

Iometer - 128KB Sequential Write

Thermals are an even bigger factor for the sequential write test than for sequential reads. The 960 Pro is 60% faster than the next fastest M.2 SSD and almost catches up to the RD400A with its thermal pad behind the controller allowing it to use its adapter card as a heatsink.

Iometer - 128KB Sequential Write (Power)

The 960 Pro's power consumption is only slightly higher than its M.2 competitors and far less than the RD400A. Given the performance, this makes the 960 Pro by far the most efficient SSD on this test, with about 30% higher performance per watt than the next most efficient drive.

The QD1 performance of the 960 Pro is substantially higher than during the rest of the test where the drive is continuously thermally limited. The power consumption is only slightly higher at QD1 as the drive is able to spend a bit more power before its temperature gets up to the limit, then the drive reaches equilibrium at around 4.4W.

Random Performance Mixed Read/Write Performance
Comments Locked

72 Comments

View All Comments

  • leexgx - Tuesday, October 25, 2016 - link

    the problem with windows 10 when using as a benchmark system is you got to make sure automatic maintenance is disabled and windows update is disabled or it mess the results up (i have 2 laptops and both of them go nuts when screen turns off on win10{fan revved up and lots of SSD activity)

    i would personally stick with windows 7 or 8 as they are more predictable

    if using windows 8 and 10 you need to disable the idle maintenance auto task (set windows update to never check) and windows 10 you have to disable the windows update service as it can mess up benchmark results (or if using windows 10 pro use GPedit to set windows update to ask before downloading, note pressing check or download actually means download and install on windows 10 pro)
  • Badelhas - Tuesday, October 18, 2016 - link

    If I replace my Vertex 3 120Gb Sata3 SSD with this one and use my PC for normal tasks like web browsing and gaming, will I notice any difference? Thats the real question to me.

    Cheers
  • DanNeely - Tuesday, October 18, 2016 - link

    The biggest one will be being able to have all yours games on SSD instead of just 1 or 2. Even a cheap SSD is fast enough that IO rarely is a major bottleneck in day to day consumer use.
  • phobos512 - Tuesday, October 18, 2016 - link

    For the money you will spend, you will not notice a significant difference. If the rest of your system is of the same vintage as the SSD you're replacing, that will be even more true.
  • phobos512 - Tuesday, October 18, 2016 - link

    And here's the evidence.

    https://cdn.arstechnica.net/wp-content/uploads/sit...

    https://cdn.arstechnica.net/wp-content/uploads/sit...

    https://cdn.arstechnica.net/wp-content/uploads/sit...
  • Amoro - Tuesday, October 18, 2016 - link

    There's a typo in the form factor for 960 drives, "Sngle-sided". Also, if the form factor is the same for both drives shouldn't the cell be merged?

    Does this make the 950 Pro obsolete at this point too? At least for the 512GB version.
  • Billy Tallis - Tuesday, October 18, 2016 - link

    Thanks. I fixed the typo, but left the two cells separate and split the PCIe interface so that there's an uninterrupted vertical line separating the old drives from the new.

    Once the 512GB 960 Pro is widely available and once Samsung delivers the drivers for it, there should be no reason to get the 512GB 950 Pro. I do hope to confirm that directly by testing a 512GB 960 Pro against the 950 Pro, but sample supplies have been pretty limited for this launch. The 256GB 950 Pro won't have a direct successor, but if the 960 EVO does what it's supposed to it should offer better real-world performance at a much lower price.
  • TheinsanegamerN - Tuesday, October 18, 2016 - link

    I'd say price would be a big one. If you can get the 950 pro for $100 less then the 960 pro of the same size, unless you need all that speed the 950 pro would be a better deal.
  • Swede(n) - Tuesday, October 18, 2016 - link

    How was the 960 Pro connected during the test?
    On the Asus Z97 mobos M.2 connector that shares bandwidth Sata Express #1?

    If so, is it recommended to unplug any other Sata drive from this Sata port #1 and use a separate Sata port for that device (for not loosing performance under heavy workload where multiple SSD-drives are in use?

    Or was the 960 Pro connected to a PCIE 3.0 via adapter?
    Please explain this and the possible benefits for one or the other, consider a hefty game GPU connected to PCIE 3.0 x16 slot on a similar mobo (Asus Z97 Deluxe).
    Sincerley from Sweden
  • Billy Tallis - Tuesday, October 18, 2016 - link

    The SSD testbed doesn't have a discrete GPU, so all PCIe SSDs are tested in the PCIe 3.0 x16 slot. There's a riser card with the power measurement circuitry between the SSD and the motherboard. M.2 PCIe SSDs are tested in a simple passive PCIe x4 to M.2 adapter card which is plugged in to the power measurement riser card. I'll also be testing the 960 Pro with the Angelbird Wings PX1 adapter and heatsink as I dig deeper into its thermal performance.

Log in

Don't have an account? Sign up now