Benchmark Configuration and Methodology

All of our testing was conducted on Ubuntu Server 14.04 LTS.  Admittedly, that might seem like an old distribution to some of our readers, but enterprises prefer stability and support over the latest software.  We did upgrade this distribution to the latest release (14.04.4), which gives us more extensive hardware support.  

To make things more interesting, we tested 4 different SKUs and included the previous generation Xeon E5 v3s, the Xeon E5-2697v2 (high end Ivy Bridge EP), and the E5-2690 (high end Sandy Bridge EP). We even included the Xeon X5680 for comparison reasons. The Xeon E5-2695 v4 is interesting to compare to the Xeon E5-2699 v3 as it has the same core count and more or less the same clockspeed. That way we could quantify the improvement that the Broadwell core offers over the Haswell core. 

Last but not least, we want to note how the performance graphs have been color-coded. Orange is the latest generation (v4), dark blue the previous one (v3), and light blue is the generation that the current (v4) is (arguably) supposed to replace (Xeon E5 v1). 

Intel's Xeon E5 Server – S2600WT (2U Chassis)

CPU Two Intel Xeon processor E5-2699v4 (2.2 GHz, 22c, 55MB L3, 145W)
Two Intel Xeon processor E5-2695v4 (2.1 GHz, 18c, 45MB L3, 145W)
Two Intel Xeon processor E5-2699v3 (2.3 GHz, 18c, 45MB L3, 145W)
Two Intel Xeon processor E5-2695v3 (2.3 GHz, 14c, 35MB L3, 120W)
Two Intel Xeon processor E5-2667v3 (3.2 GHz, 8c, 20MB L3, 135W)
RAM 128GB (8x16GB) Kingston DDR-2400
Internal Disks 2x Intel SSD3500 400GB
Motherboard Intel Server Board Wildcat Pass
Chipset Intel Wellsburg B0
BIOS version 1/28/2016
PSU Delta Electronics 750W DPS-750XB A (80+ Platinum)

The typical BIOS settings can be seen below. 

SuperMicro 6027R-73DARF (2U Chassis)

CPU Two Intel Xeon processor E5-2697 v2 (2.7GHz, 12c, 30MB L3, 130W)
Two Intel Xeon processor E5-2690 (2.9GHz, 8c, 20MB L3, 135W)
RAM 128GB (8x16GB) Samsung at 1866 MHz 
Internal Disks 2x Intel SSD3500 400GB
Motherboard SuperMicro X9DRD-7LN4F
Chipset Intel C602J
BIOS version R 3.0a (December the 6th, 2013)
PSU Supermicro 740W PWS-741P-1R (80+ Platinum)

All C-states are enabled in both the BIOS.

Other Notes

Both servers are fed by a standard European 230V (16 Amps max.) power line. The room temperature is monitored and kept at 23°C by our Airwell CRACs.

Xeon E5 v4 SKUs and Pricing Single Core Integer Performance With SPEC CPU2006
Comments Locked

112 Comments

View All Comments

  • isrv - Sunday, April 3, 2016 - link

    i will belive that only after one by one comparison E5-1630v3 vs any of E5v4 composing wordpress front page for example.
    and so far, that's only a words about better caching etc...
  • simplyfabio - Monday, April 4, 2016 - link

    Could I ask one thing here? For a Workstation 3D, both for rendering and graphic/cad, (like illustrator, photoshop, autocad, 3dsmax), could be better have more core like the E5 2690 (considering all the turbo clock speed for each core active) ore better frequency, like the 1680? Thanks a lot to everyone, I can't find a nice review on this side of this CPUs...
  • grantdesrosiers - Monday, April 4, 2016 - link

    Not sure if anyone has pointed it out yet, but I think there is an error on the "Multi-Threaded Integer Performance" page, first graph. The 2695v4 says 22 cores, I believe it should be 18.
  • SanX - Monday, April 4, 2016 - link

    Poor Moore's law for workstations... 10-20% gain per 2-years generation.

    Think about it: there is no reason to upgrade for the next *** 5-10 generations *** or the next 10-20 years (!!!) when the processors will be only e-fold (2.71x) faster.
  • dragonsqrrl - Monday, April 4, 2016 - link

    The problem is your first assumption is already false.
  • Khenglish - Monday, April 4, 2016 - link

    I can't understand why the 4C and under turbo speeds are so slow on the v4 2699. A Broadwell with 55MB of cache being outperformed by a stock clocked Sandy Bridge is ridiculous. Why would this CPU not clock up to at least 4.2GHz with a 4 core workload, and say 4.4GHz for a 1 core workload? Hell it costs over $4000 and a massive TDP. You'd think Intel could take a minute to make the low core count speeds not terribly low.

    My workstation in my lab has a 1650 v3. My workloads peak between 4-8 cores. There is not a single CPU in the v4 lineup that would be an upgrade over the 1650 v3 despite the major power savings of 14nm and the cache size increase due to Intel's inability to set reasonable 8C and under frequencies.
  • Romulous - Monday, April 4, 2016 - link

    People who are serious about recompiling the same software often would probably use ccache and maybe even distcc. So your Linux kernel compile test is really only there for to show potential cpu performance.
  • LHL2500 - Tuesday, April 5, 2016 - link

    "It finds a home in the same LGA 2011-3 socket."
    Not according to Intel's website.
    http://ark.intel.com/compare/91754,81908
    In this comparison between a v3 and a v4 version of a E5-2680, the socket support for the two chips are different. The older version using the the FCLGA2011-3 and the newer version using FCLGA2011.
    So who is right? Anandtech or Intel?
    And it not just this chip. It's all the v4s.
    While I hope it's a typo on Intel's behalf, for now it doesn't look like the v4s are direct upgrades to the v3s. You will apparently need new motherboards.
  • xrror - Tuesday, April 5, 2016 - link

    That... is a bit disconcerting. I also like how "VID Voltage Range" for the v4 parts is simply listed as "0" ...
  • SeanJ76 - Tuesday, April 5, 2016 - link

    My School had the 3rd Generation Xeon's in their Workstations, they were slow as fuck@3.3ghz!! The consumer i7 4790K/6700K would run laps around these Xeon crap cpus!

Log in

Don't have an account? Sign up now