Final Words

I began this article with a recap of my history with SSDs, stating that the more things change, the more they stay the same. Honestly, today, the SSD world isn't much different.

Drives are most definitely cheaper today; the Intel X25-M originally sold at close to $600 for 80GB and is now down in the $340 - $360 range. The Samsung SLC drives have lost their hefty price tags and are now just as affordable as the more mainstream MLC solutions.

But the segmentation of the SSD market still exists. There are good drives and there are bad ones.

Ultimately it all boils down to what you optimize for. On its desktop drives, Intel chose to optimize for the sort of random writes you’d find on a desktop. The X25-E is much more resilient to the workload a multi-user environment would throw at it, such as in a server and thus carries a handsome price tag.

At first glance it would appear that Samsung’s latest controller used in the preview OCZ Summit drive I tested optimizes for the opposite end of the spectrum: sacrificing latency for bandwidth. As the Summit was used more and more, its random write latency went up while its sequential write speed remained incredibly high. Based on these characteristics I’d venture that the Summit would be a great drive for a personal file server, while the Intel X25-M is better suited as a boot/app drive in your system.

I’d argue that Intel got it “right”. Given the limited sizes of SSDs today and the high cost per GB, no one in their right mind is using these drives for mass storage of large files - they’re using them as boot and application drives, that’s where they excel after all.

Over the past year Intel continually claimed that its expertise in making chipsets, microprocessors and generally with the system as a whole led to a superior SSD design. Based on my tests and my own personal use of the drive and literally every other one in this article, I’d tend to agree.

OCZ and Indilinx initially made the mistake of designing the Vertex and its Barefoot controller similarly to the Samsung based Summit. It boasted very high read/write speeds but at the expense of small file write latency. In the revised firmware, the one that led to the shipping version, OCZ went back to Indilinx and changed approaches. The drive now performs like a slower Intel drive; rightfully so, as it’s cheaper.

While I wouldn’t recommend any of the JMicron based drives, with the Vertex I do believe we have a true value alternative to the X25-M. The Intel drive is still the best, but it comes at a high cost. The Vertex can give you a similar experience, definitely one superior to even the fastest hard drives, but at a lower price. And I’ll spare you the obligatory reference to the current state of the global economy. The Samsung SLC drives have come down in price but they don't seem to age as gracefully as the Intel or OCZ Vertex drives. If you want price/performance, the Vertex appears to be the best option and if you want all-out performance, snag the Intel drive.

The only potential gotcha is that both OCZ and Indilinx are smaller companies than Intel. There’s a lot of validation that goes into these drives and making sure they work in every configuration. While the Vertex worked totally fine in the configurations I tested, that’s not to say that every last bug has been worked out. There are a couple of threads in OCZ’s own forums that suggest compatibility problems with particular configurations; while this hasn’t been my own experience, it’s worth looking into before you purchase the drive.

While personally I'm not put off by the gradual slowdown of SSDs, I can understand the hesitation. In the benchmarks we've looked at today, for the most part these drives perform better than the fastest hard drives even when the SSDs are well worn. But with support for TRIM hopefully arriving close to the release of Windows 7, it may be very tempting to wait. Given that the technology is still very new, the next few revisions to drives and controllers should hold tremendous improvements.

Drives will get better and although we're still looking at SSDs in their infancy, as a boot/application drive I still believe it's the single best upgrade you can do to your machine today. I've moved all of my testbeds to SSDs as well as my personal desktop. At least now we have two options to choose from: the X25-M and the Vertex.

Game Loading Performance
Comments Locked

250 Comments

View All Comments

  • punjabiplaya - Wednesday, March 18, 2009 - link

    Great info. I'm looking to get an SSD but was put off by all these setbacks. Why should I put away my HDDS and get something a million times more expensive that stutters?
    This article is why I visit AT first.
  • Hellfire26 - Wednesday, March 18, 2009 - link

    Anand, when you filled up the drives to simulate a full drive, did you also write to the extended area that is reserved? If you didn't, wouldn't the Intel SLC drive (as an example) not show as much of a performance drop, versus the MLC drive? As you stated, Intel has reserved more flash memory on the SLC drive, above the stated SSD capacity.

    I also agree with GourdFreeMan, that the physical block size needs to be reduced. Due to the constant erasing of blocks, the Trim command is going to reduce the life of the drive. Of course, drive makers could increase the size of the cache and delay using the Trim command until the number of blocks to be erased equals the cache available. This would more efficiently rearrange the valid data still present in the blocks that are being erased (less writes). Microsoft would have to design the Trim command so it would know how much cache was available on the drive, and drive makers would have to specifically reserve a portion of their cache for use by the Trim command.

    I also like Basilisk's comment about increasing the cluster size, although if you increase it too big, you are likely to be wasting space and increasing overhead. Surely, even if MS only doubles the cluster size for NTFS partitions to 8KB's, write cycles to SSD's would be reduced. Also, There is the difference between 32bit and 64bit operating systems to consider. However, I don't have the knowledge to say whether Microsoft can make these changes without running into serious problems with other aspects of the operating system.
  • Anand Lal Shimpi - Wednesday, March 18, 2009 - link

    I only wrote to the LBAs reported to the OS. So on the 80GB Intel drive that's from 0 - 74.5GB.

    I didn't test the X25-E as extensively as the rest of the drives so I didn't look at performance degradation as closely just because I was running out of time and the X25-E is sooo much more expensive. I may do a standalone look at it in the near future.

    Take care,
    Anand
  • gss4w - Wednesday, March 18, 2009 - link

    Has anyone at Anandtech talked to Microsoft about when the "Trim" command will be supported in Windows 7. Also it would be great if you could include some numbers from Windows 7 beta when you do a follow-up.

    One reason I ask is that I searched for "Windows 7 ssd trim" and I saw a presentation from WinHEC that made it sound like support for the trim command would be a requirement for SSD drives to meet the Windows 7 logo requirements. I would think if this were the case then Windows 7 would have support for trim. However, this article made it sound like support for Trim might not be included when Windows 7 is initially released, but would be added later.

  • ryedizzel - Thursday, March 19, 2009 - link

    I think it is obvious that Windows 7 will support TRIM. The bigger question this article points out is whether or not the current SSDs will be upgradeable via firmware- which is more important for consumers wanting to buy one now.
  • Martimus - Wednesday, March 18, 2009 - link

    It took me an hour to read the whole thing, but I really enjoyed it. It reminded me of the time I spent testing circuitry and doing root cause analysis.
  • alpha754293 - Wednesday, March 18, 2009 - link

    I think that it would be interesting if you were to be able to test the drives for the "desktop/laptop/consumer" front by writing a 8 GiB file using 4 kiB block sizes, etc. for the desktop pattern and also to test the drive then with a larger sizes and larger block size for the server/workstation pattern as well.

    You present some very very good arguments and points, and I found your article to be thoroughly researched and well put.

    So I do have to commend you on that. You did an excellent job. It is thoroughly enjoyable to read.

    I'm currently looking at a 4x 256 GB Samsung MLC on Solaris 10/ZFS for apps/OS (for PXE boot), and this does a lot of the testing; but I would be interested to see how it would handle more server-type workloads.
  • korbendallas - Wednesday, March 18, 2009 - link

    If The implementation of the Trim command is as you described here, it would actually kind of suck.

    "The third step was deleting the original 4KB text file. Since our drive now supports TRIM, when this deletion request comes down the drive will actually read the entire block, remove the first LBA and write the new block back to the flash:"

    First of all, it would create a new phenomenon called Erase Amplification. This would negatively impact the lifetime of a drive.

    Secondly, you now have worse delete performance.


    Basically, an SSD 4kB block can be in 3 different states: erased, data, garbage. A block enters the garbage state when a block is "overwritten" or the Trim command marks the contents as invalid.

    The way i would imagine it working, marking block content as invalid is all the Trim command does.

    Instead the drive will spend idle time finding the 512kB pages with the most garbage blocks. Once such a page is found, all the data blocks from that page would be copied to another page, and the page would be erased. Doing it in this way maximizes the number of garbage blocks being converted to erased.
  • alpha754293 - Wednesday, March 18, 2009 - link

    BTW...you might be able to simulate the drive as well using Cygwin where you go to the drive and run the following:

    $ dd if=/dev/random of=testfile bs=1024k count=76288

    I'm sure that you can come up with fancier shell scripts and stuff that uses the random number generator for the offsets (and if you really want it to work well, partition it so that when it does it, it takes up the entire initial 74.5 GB partition, and when you're done "dirtying" the data using dd and offset in a random pattern, grow the partition to take up the entire disk again.)

    Just as a suggestion for future reference.

    I use parts of that to some (varying) degree for when I do my file/disk I/O subsystem tests.
  • nubie - Wednesday, March 18, 2009 - link

    I should think that most "performance" laptops will come with a Vertex drive in the near future.

    Finally a performance SSD that comes near mainstream pricing.

    Things are looking up, if more manufacturers get their heads out of the sand we should see prices drop as competition finally starts breeding excellence.

Log in

Don't have an account? Sign up now