CPU Performance, Short Form

For our motherboard reviews, we use our short form testing method. These tests usually focus on if a motherboard is using MultiCore Turbo (the feature used to have maximum turbo on at all times, giving a frequency advantage), or if there are slight gains to be had from tweaking the firmware. We put the memory settings at the CPU manufacturers suggested frequency, making it very easy to see which motherboards have MCT enabled by default.

For X570 we are running using Windows 10 64-bit with the 1903 update as per our Ryzen 3000 CPU review.

Rendering - Blender 2.7b: 3D Creation Suite - link

A high profile rendering tool, Blender is open-source allowing for massive amounts of configurability, and is used by a number of high-profile animation studios worldwide. The organization recently released a Blender benchmark package, a couple of weeks after we had narrowed our Blender test for our new suite, however their test can take over an hour. For our results, we run one of the sub-tests in that suite through the command line - a standard ‘bmw27’ scene in CPU only mode, and measure the time to complete the render.

Rendering: Blender 2.79b

Streaming and Archival Video Transcoding - Handbrake 1.1.0

A popular open source tool, Handbrake is the anything-to-anything video conversion software that a number of people use as a reference point. The danger is always on version numbers and optimization, for example the latest versions of the software can take advantage of AVX-512 and OpenCL to accelerate certain types of transcoding and algorithms. The version we use here is a pure CPU play, with common transcoding variations.

We have split Handbrake up into several tests, using a Logitech C920 1080p60 native webcam recording (essentially a streamer recording), and convert them into two types of streaming formats and one for archival. The output settings used are:

  • 720p60 at 6000 kbps constant bit rate, fast setting, high profile
  • 1080p60 at 3500 kbps constant bit rate, faster setting, main profile
  • 1080p60 HEVC at 3500 kbps variable bit rate, fast setting, main profile

Handbrake 1.1.0 - 720p60 x264 6000 kbps FastHandbrake 1.1.0 - 1080p60 x264 3500 kbps FasterHandbrake 1.1.0 - 1080p60 HEVC 3500 kbps Fast

Rendering – POV-Ray 3.7.1: Ray Tracing - link

The Persistence of Vision Ray Tracer, or POV-Ray, is a freeware package for as the name suggests, ray tracing. It is a pure renderer, rather than modeling software, but the latest beta version contains a handy benchmark for stressing all processing threads on a platform. We have been using this test in motherboard reviews to test memory stability at various CPU speeds to good effect – if it passes the test, the IMC in the CPU is stable for a given CPU speed. As a CPU test, it runs for approximately 1-2 minutes on high-end platforms.

Rendering: POV-Ray 3.7.1 Benchmark

Compression – WinRAR 5.60b3: link

Our WinRAR test from 2013 is updated to the latest version of WinRAR at the start of 2014. We compress a set of 2867 files across 320 folders totaling 1.52 GB in size – 95% of these files are small typical website files, and the rest (90% of the size) are small 30-second 720p videos.

Encoding: WinRAR 5.60b3

Synthetic – 7-Zip v1805: link

Out of our compression/decompression tool tests, 7-zip is the most requested and comes with a built-in benchmark. For our test suite, we’ve pulled the latest version of the software and we run the benchmark from the command line, reporting the compression, decompression, and a combined score.

It is noted in this benchmark that the latest multi-die processors have very bi-modal performance between compression and decompression, performing well in one and badly in the other. There are also discussions around how the Windows Scheduler is implementing every thread. As we get more results, it will be interesting to see how this plays out.

Encoding: 7-Zip 1805 CompressionEncoding: 7-Zip 1805 DecompressionEncoding: 7-Zip 1805 Combined

Point Calculations – 3D Movement Algorithm Test: link

3DPM is a self-penned benchmark, taking basic 3D movement algorithms used in Brownian Motion simulations and testing them for speed. High floating point performance, MHz, and IPC win in the single thread version, whereas the multithread version has to handle the threads and loves more cores. For a brief explanation of the platform agnostic coding behind this benchmark, see my forum post here.

System: 3D Particle Movement v2.1

Neuron Simulation - DigiCortex v1.20: link

The newest benchmark in our suite is DigiCortex, a simulation of biologically plausible neural network circuits, and simulates activity of neurons and synapses. DigiCortex relies heavily on a mix of DRAM speed and computational throughput, indicating that systems which apply memory profiles properly should benefit and those that play fast and loose with overclocking settings might get some extra speed up. Results are taken during the steady-state period in a 32k neuron simulation and represented as a function of the ability to simulate in real time (1.000x equals real-time).

System: DigiCortex 1.20 (32k Neuron, 1.8B Synapse)

System Performance Gaming Performance
Comments Locked

116 Comments

View All Comments

  • oynaz - Saturday, August 31, 2019 - link

    I actually prefer more cores to faster cores in my DAW. Each effect bus, or track, cannot be split into multiple cores, true, but you usually quite a few buses going.
  • inighthawki - Friday, August 30, 2019 - link

    Gaming
  • Sweetbabyjays - Thursday, August 29, 2019 - link

    In a professional setting, where you are doing thread intensive workloads, and IT is not cool with you overclocking...then yes, I totally agree 3900x makes way more sense.

    "use less power overall" ? 9900k has a TDP of 95W, while the 3900x has a TDP of 105W, Additionally the Z390 chipset has a TDP of 6W while the X570 has a TDP of 11W. Now I know there is a discrepancy between how AMD and Intel measure TDP, so the numbers at face value may not be telling the whole story. That said, I would be very interested to see overall system power draw for both to test the veracity of your statement.
  • AshlayW - Thursday, August 29, 2019 - link

    Oh boy, you actually think the 9900K uses 95W? Joke's on you pal, that's at 3.6 GHz. At full turbo clocks the 9900K uses 150-200W. Ryzen 3000 is almost twice the performance per watt in some scenarios.
  • Trikkiedikkie - Saturday, August 31, 2019 - link

    With the 3900 having many things inside the processor, whereas the 9900 has extra chips needed. And Intel's numbers only count for baseclock
  • Sweetbabyjays - Thursday, August 29, 2019 - link

    "trounce it with it's higher core-count parts in multi-threaded scenarios." Aside from some synthetic benchmarks, I suggest looking at the puget systems website for professional benchmarks, if you're looking for more real world professional performance scenarios.

    The 12 core part is better in some(in some the 9900k is better) scenarios, but rarely(if ever) by more than 10%. Perhaps your definition of "trounce" is different from mine thought.

    If you're gaming much more often than you are working/creating the increased core count really wont improve your overall computing experience, if at all.
  • Oliseo - Thursday, August 29, 2019 - link

    This is true. But the argument remains, just how many people actually use highly mutli-threaded scenarios.

    I'd wager if you got a venn diagram of gamers and content creators, the content creators would simply be a small spot on the very large gaming circle.

    I know a lot of gamers, yet I struggle to meet 3D cad designers or Film Editors.

    So yes, you're right, AMD will trounce Intel in that respect. But until we get games using more than 8 cores, the majority of people will not be better off because they simply don't need those extra cores as they don't run any software that can make use of them.

    And that goes for AMD folks wanting to get the AMD chips as well.
  • Trikkiedikkie - Saturday, August 31, 2019 - link

    Gaming is soo small compared to people doing actual work.
  • AshlayW - Thursday, August 29, 2019 - link

    $150 more, for 10% higher single core performance when both CPUs already have extremely good single core performance, and you can place a 4700X in the same motherboard next year that will have even higher single core than the 9900K? Seriously people, consumer stupidity is why Intel is still selling CPUs.
  • Trikkiedikkie - Saturday, August 31, 2019 - link

    Single core is soooo last century.

    Only people that have very little serious work apart from Adobe want that.

Log in

Don't have an account? Sign up now