Sequential Read Performance

Our first test of sequential read performance uses short bursts of 128MB, issued as 128kB operations with no queuing. The test averages performance across eight bursts for a total of 1GB of data transferred from a drive containing 16GB of data. Between each burst the drive is given enough idle time to keep the overall duty cycle at 20%.

Burst 128kB Sequential Read (Queue Depth 1)

The QD1 burst sequential read performance of the Intel Optane SSD 800p is close to their rated maximum throughput, but they are far behind the 900p and high-end Samsung drives that actually need more than two PCIe lanes.

Our test of sustained sequential reads uses queue depths from 1 to 32, with the performance and power scores computed as the average of QD1, QD2 and QD4. Each queue depth is tested for up to one minute or 32GB transferred, from a drive containing 64GB of data.

Sustained 128kB Sequential Read

On the longer sequential read test, the Samsung NVMe SSDs fall down to the level of the Optane SSD 800p, because the flash-based SSDs are slowed down by some of the data fragmentation left over from the random write test. The Optane SSDs performed those writes as in-place modifications and thus didn't incur any fragmentation. This leaves the Samsung 960 PRO 2TB barely faster than the 800p, while the 900p runs away with its lead.

Sustained 128kB Sequential Read (Power Efficiency)

The Optane SSD 800p has the clear lead in power efficiency, as its second-tier performance comes with far lower power consumption than the top-performing 900p.

There are no big surprises with the queue depth scaling; the 800p's sequential reads are slightly faster at QD2 than QD1, but there's no further improvement beyond that. The 800p is easily staying within its 3.75 W rated maximum power draw.

Sequential Write Performance

Our test of sequential write burst performance is structured identically to the sequential read burst performance test save for the direction of the data transfer. Each burst writes 128MB as 128kB operations issued at QD1, for a total of 1GB of data written to a drive containing 16GB of data.

Burst 128kB Sequential Write (Queue Depth 1)

The burst sequential write speed of the Intel Optane SSD 800p is no better than the low-end flash-based NVMe SSDs. Without any write caching mechanism in the controller, the fundamental nature of 3D XPoint write speeds shows through. The 900p overcomes this by using a 7-channel controller, but that design doesn't fit within the M.2 form factor.

Our test of sustained sequential writes is structured identically to our sustained sequential read test, save for the direction of the data transfers. Queue depths range from 1 to 32 and each queue depth is tested for up to one minute or 32GB, followed by up to one minute of idle time for the drive to cool off and perform garbage collection. The test is confined to a 64GB span of the drive.

Sustained 128kB Sequential Write

The Optane SSD 800p looks better on the sustained sequential write test, as all the TLC-based SSDs run out of SLC cache and slow down dramatically, while the Optane SSDs keep delivering the exact same performance.

Sustained 128kB Sequential Write (Power Efficiency)

Despite their very different sequential write throughput, the Optane SSD 900p and 800p end up with very similar power efficiency on this test. The Samsung NVMe drives are even more efficient, but only the premium MLC-based 960 PRO has a large lead.

Almost all of the drives show no performance scaling with increasing queue depth, as large-block sequential writes can keep all the memory channels busy with only a little bit of buffering. The 900p needs at least two 128kB writes in flight to reach full throughput.

Random Performance Mixed Read/Write Performance
Comments Locked

116 Comments

View All Comments

  • beginner99 - Friday, March 9, 2018 - link

    Exactly. Anything below 240GB is not a workable solution nowadays. I remember my first intel g2 80GB. constant micro-managing where to put files and which app gets to be on the ssd and which not. Or for my parents I back then got them a 64 gb drive. When the win 10 update came it was not possible to update because updating windows 7 to 10 requires more than 64gb.
  • Calin - Friday, March 9, 2018 - link

    I do use a 120GB SSD on my desktop, and it works good enough with a 2TB hard drive. I even use a 90% partition, as early SSDs had performance problems when close to full.
  • sharath.naik - Thursday, March 8, 2018 - link

    was rapid mode tried on Samsung drives?. not sure with a large enough ram the difference in random performance would matter that much.
  • Billy Tallis - Thursday, March 8, 2018 - link

    Half the test suite is run on Linux, so Rapid Mode isn't an option. And in general, I don't approve of third-party software that second-guesses the decisions made by core parts of the OS like the virtual memory system—especially not when those tools put user data at risk without being absolutely clear about what they're really doing.
  • eddieobscurant - Friday, March 9, 2018 - link

    Billy , do you have any news on micron's QuantX ?
  • Dragonstongue - Thursday, March 8, 2018 - link

    Intel and Micron (IM) joint venture, Intel "branded" as Optane either way is 3D XPoint..far as I understood Micron decided to "drop it" so is Intel going about it all on their own, was Unity Semiconductors who was bought out by Rambus 2012, that likely not a good thing either (they) RB seem more prevalent to sue people vs making a tangible product everyone wants (IMO)

    the above 3d x, optane whatever seems like another thing that "on paper" seems like would be a decent thing, but, the price factor puts it into a "there are better options available" that offer similar performance or at the very least substantially better $/gb value.

    I think that is what Micron was seeing, no real way to get the "value" out of it without charging too high a price to make it market worthwhile for them and consumer, Intel is their own fish and they always (again IMO) charge substantial price for a "do we really need this" type product (like Nvidia) cut corners or cut down performance that could have been, but still want top dollar, and "next year" come out with a more full fat version (that should have been the previous year) and want more $ for the "upgrade" planned obsolescence/upgrade path.

    for a loose example, Samsung 950 EVO M.2 250gb (pro faster but ofc more pricey)
    I see available for ~$160 CAD
    read/write 3200/1900
    QD1 Thread
    Random Read: 14,000 IOPS
    Random Write: 50,000 IOPS
    QD32 Thread
    Random Read: 380,000 IOPS
    Random Write: 360,000 IOPS

    their "power draw" and latency do not seem to be praiseworth either, so it still leads me to the same question "why bother"...also, I really wish M.2 drives were maybe a toned down speed version so it could be "less expensive" here I thought that by going smaller and smaller node and going from SLC to MLC to 3d etc price would drop and drop while performance would go up and up, seems that the only real thing that has changed is the less on the "board" the further they crank the speed give smaller capacity and increase the price *facepalm*
  • Lolimaster - Friday, March 9, 2018 - link

    10x less latency
    15x faster in QD1r
    4X faster in QD1w
  • Adramtech - Saturday, March 10, 2018 - link

    Micron has no plans to drop QuantX and are providing an update at their May tech conference.
  • shabby - Thursday, March 8, 2018 - link

    Leave it to intel to artificially cripple a product on purpose, who does this?
  • boeush - Thursday, March 8, 2018 - link

    Seems to me, if you really want supper-fast, low-latency high-endurance random read/write at low QD and capacities ~128GB for a lot of $$$, then just get a bunch of RAM and a UPS (to prevent data loss in case of power failure.). No SSD technology will ever beat good ol' RAM in terms of performance. In this case, for mass storage you just need fast sequential reads and writes so you can quickly map your filesystem to/from RAM on system startup/shutdown, respectively...

    In light of which, until Intel comes out with their next-gen Optane at 512 GB+ capacities in M.2 package, the current product feels like a solution on search of a problem

Log in

Don't have an account? Sign up now