Batman: Arkham City

After a rocky launch last month, Rocksteady finally got their DirectX 11 problems sorted out for Batman: Arkham City earlier this month. Batman: Arkham City is loosely based on Unreal Engine 3, while the DirectX 11 functionality was apparently developed in-house. With the addition of these features Batman is far more a GPU demanding game than its predecessor was, particularly with tessellation cranked up to high.

Batman: Arkham City

Batman: Arkham City

Batman: Arkham City

At Extreme settings Batman is quite daunting for our entire GPU lineup at 2560. Nothing except the GTX 590 can crack 60fps, though the 7970 begins to come close at 52fps. Relative to NVIDIA’s lineup Batman ends up being one of the weaker games for the 7970, with the 7970 only taking an 18% lead over the GTX 580 at 2560. As for the 6970, the 7970 has another very strong showing opposite AMD’s previous generation, beating the 6970 by 44%.

At 1920 we’re still using Extreme settings and the story is much the same, though the 7970’s lead drops a bit more. Against the GTX 580 it’s now only 14% faster, and against the 6970 it’s 35% faster. Things do eventually pick up at 1680 when we back off to Very High settings and stop using MSAA, at which point the 7970 takes a surprising 32% lead over the GTX 580 while the lead over the 6970 jumps back up to 47%.

Looking at all of our cards it’s really the 5870 that tells the whole story. Tessellation plays a large factor in Batman’s performance, and as a result the partially tessellation-constrained 5870 absolutely struggles even at 1920. Consequently this is further proof that AMD was able to get a great deal of additional performance out of their geometry engines even with the 2 tringle/clock limit.

Total War: Shogun 2 Portal 2
Comments Locked

292 Comments

View All Comments

  • SlyNine - Friday, December 23, 2011 - link

    Not really, If Nvidia didn't handicap the CPU version of physx so bad than I'd be fine with it, But Nvidia purposely made the CPU version of phsyx worse totally gimped.
  • CeriseCogburn - Thursday, March 8, 2012 - link

    I agree, but that's the way it guy. The amd fans don't care what they and their reviewers pull, and frankly the reviewers would recieve death threats if they didn't comply with amd fanboy demands....
    So when nvidia had ambient occlusion active for several generations back in a driver add, we were suddenly screamed at that shadows in games suck.... because of course amd didn't have that feature...
    That's how the whole thing is set up - amd must be the abused underdog, nvidia must be the evil mis-implementer, until of course amd gets and actual win, or even any win even with 10% IQ performance cheat solidly in place, and any other things like failed AA, poor tessellation performance, no PhysX, etc, etc, etc...
    We just must hate nvidia for being better and of course it's all nvidia's fault as they are keeping the poor red radeon down....
    If amd radeon has " a perfectly circular algorithm " and it does absolutely nothing and even worse in all games, it is to be praised as an advantage anyway.... and that is still happening to this very day... we ignore shimmer until now, when amd 79xx has a fix for it.... etc..
    Dude, that's the way it is man....
    Nvidia is the evil, and they're keeping the radeon down...
    They throw around money too ( that's unfair as well - and evil ...)
    See?
    So just pretend anything radeon cannot do that nvidia can doesn't count and is bad, and then make certain nvidia is cut down to radeon level, IQ cheat, no PhysX, AA not turned on, Tesselation turned down, default driver hacks left in place for amd, etc....
    Then be sure to cheer when some price perf calc ignoring all the above shows a higher and or lower and card to have a few cents advantage... no free game included, no eyefinity cables... etc.
    Just dude... amd = good / nvidia=evil ...
    Cool ?
  • shin0bi272 - Thursday, December 22, 2011 - link

    Since I cant edit my comments I have to post this in a second comment instead.

    According to the released info, Nvidia’s Next Gen flagship GK-100/GK-112 chip which will feature a total f 1024 Shaders (Cuda Cores), 128 texture units (TMUs), 64 ROP’s and a 512-bit GDDR5 Memory interface. The 28nm Next Gen beast would outperform the current Dual chip Geforce GTX590 GPU.
  • shaboinkin - Thursday, December 22, 2011 - link

    Can someone tell me why GPUs tend to have much more transistors than a CPU? I never knew why.
  • Boushh - Thursday, December 22, 2011 - link

    Basically it has to do with the difference between programs (= CPU instructions) and graphics (= pixels):

    A program consists of CPU intructions, many of these instructions depend on output from the previous instruction, Therefore adding more pipelines that can work on the instructions doen't realy work.

    A picture consists of pixels, these can be processed in parrallel. So if you double the number of pipelines (= pixels you can work on at the same time), you double the performance.

    Therefore CPU's don't have that many transistors. In fact, most transistors in a CPU are in the cache memory not in the actual CPU cores. And GPU's do.

    Of course this is hust a simple explenation, the through is much much more complex ;-)
  • Boushh - Thursday, December 22, 2011 - link

    That last line should read:

    'Of course this is just a simple explanation, the reality is much much more complex'

    Reminds me to yet again vote for an EDIT button !!!! Maybe as a christmas present ? PLEASE !!!
  • shaboinkin - Thursday, December 22, 2011 - link

    Interesting...
    Do you know of a site that goes into the finer details?
  • Mishera - Wednesday, December 28, 2011 - link

    If you're looking for something to specifically answer you question the checking different tech sites. I think realworldtech addressed tis to a degree. Jon Stokes at arstechnica from what I heard wrote some pretty good articles on chip design as well. But if it's a question on chip architecture, reading some textbooks is your best bet. I asked a similar question in the forums before and got some great responses just check my posts.

    I add to what Boushh said in that for the type of information they process, it's beneficial to have more performance (and not just for graphics). That's why Amd has been pushing to integrate the gpu into the CPU. That's also to a degree show the different philosophy right now between intel and Amd in multicore computing (or the difference between Amd's new gpu architecture vs their previous one).

    What it comes down to is optimizing chip design to make use of programs, vice versa. There really is now absolute when dealing with this.
  • MrSpadge - Thursday, December 22, 2011 - link

    It's not like - as stated several times in the article - AMD is wrong about the power target of the HD7970, if they mean the PowerTune limit. Think of it as "the card is built to handle this much heat, and is guaranteed not to exceed it". That doesn't forbid drawing less power. And that's exactly what the HD6970 does: it's got the same "power target", but it uses less of its power budget than the HD7970.

    Like CPUs, whose real world power consumption is often much less than the TDP.

    MrS
  • Ryan Smith - Thursday, December 22, 2011 - link

    PowerTune is a hard cap on power consumption. Given a sufficient workload (i.e. FurMark or OCCT), you can make the card try to consume more power than it is allowed, at which point PowerTune kicks in. Or to put this another way, PowerTune doesn't kick in unless the card is at its limit.

    PowerTune kicked in for both the 6970 and 7970. In which case both cards should have be limited to 250W.

Log in

Don't have an account? Sign up now