POWER8 Servers: The Reality Check

As we've just seen, the specs of the POWER8 as announced at launch are very impressive. But what about the in the real world? The top models (10-12 at 4 GHz+, 2TB per socket) are still limited to the extremely expensive E870/E880, which typically costs around 3 times as much (or more) as a comparable Xeon E7 system. But there is light at the end of the tunnel: "PowerLinux" quad socket systems are more expensive than comparable x86 systems, but only by 10 to 30%.

The real competition for x86 must probably come from the third parties of the OpenPower Fondation. IBM sells them POWER8 chips at much more reasonable prices ($2k - $3k), so it is possible to build a reasonably priced POWER8 system. The POWER8 chips sold to third parties are somewhat "lighter" versions, but that is more an advantage than you would think. For example, by keeping the clockspeed a bit lower, the power consumption is lower (190W TDP). These chips also have only 4 (instead  of 8) memory buffer chips, which "limits" them to 1 TB of memory, but again this saves quite a bit of power, between 50W and 80W. In other words, the POWER8 chips available to third parties are much more reasonable and even more competitive than the power gobbling, ultra expensive behemoths that got all the attention at launch.  

Tyan already has an one socket server and several Taiwanese (Wistron) and Chinese vendors are developing 2 socket systems. Quad socket models are not yet on the horizon as far as we know, but is probably going to change soon.   

POWER8 vs. Xeon E5 v3: SPECing It Out

Unfortunately we did not have access to a full blown POWER8 system at this time. But as our loyal readers know, we do not limit our server testing to the x86 world (see here and here) . So until a POWER8 system arrives, we'll have to check out the available industry standard benchmarks. To that end we looked up the SPEC CPU2006 numbers for a single socket CPU. 

SPEC CPU2006 - One chip

The 12 cores inside the POWER8 - the single socket chips found in the more reasonable priced servers - perform very well. The integer performance is only a few percentages lower than the Intel chip and POWER8's floating point performance is well ahead of the Xeon.

Overall the POWER8 is quite capable of keeping up with the Xeon E5-2699v3. And don't let the "2.3 GHz" official clockspeed fool you into thinking that the Xeons are clocked unnecessarily low, either: in SPECint, the XEON is running at 2.8 GHz most of the time.

Ultimately, the POWER8 is able to offer slightly higher raw performance than the Intel CPUs, however it just won't be able to do so at the same performance/watt. Meanwhile the reasonable pricing of the POWER8 chips should result in third party servers that are strongly competitive with the Xeon on a performance-per-dollar basis. Reasonably priced, well performing dual and quad socket Linux on Power servers should be possible very soon.

The Competitor: IBM's POWER8 Benchmark Configuration
Comments Locked

146 Comments

View All Comments

  • PowerTrumps - Saturday, May 9, 2015 - link

    I'm sure the author will update the article unless this was a Intel cheerleading piece.
  • name99 - Friday, May 8, 2015 - link

    The thing is called E7-8890. Not E7-5890?
    WTF Intel? Is your marketing team populated by utter idiots? Exactly what value is there in not following the same damn numbering scheme that your product line has followed for the past eight years or so?

    Something like that makes the chip look like there's a whole lot of "but this one goes up to 11" thinking going on at Intel...
  • name99 - Friday, May 8, 2015 - link

    OK, I get it. The first number indicates the number of glueless chips, not the micro-architecture generation. Instead we do that (apparently) with a v2 or v3 suffix.
    I still claim this is totally idiotic. Far more sensible would be to use the same scheme as the other Intel processors, and use a suffix like S2, S4, S8 to show the glueless SMP capabilities.
  • ZeDestructor - Friday, May 8, 2015 - link

    They've been using this convention since Westmere-EX actually, at which point they ditched their old convention of a prefix letter for power tier, followed by one digit for performance/scalability tier, followed by another digit for generation then the rest for individual models. Now we have 2xxx for dual socket, 4xxx for quad socket and 8xxx for 8+ sockets, and E3/E5/E7 for the scalability tier. I'm fine with either, though I have a slight preference for the current naming scheme because the generation is no longer mixed into the main model number.
  • Morawka - Saturday, May 9, 2015 - link

    man the power 8 is a beefy cpu... all that cache, you'd think it would walk all over intel.. but intel's superior cpu design wins
  • PowerTrumps - Saturday, May 9, 2015 - link

    please explain
  • tsk2k - Saturday, May 9, 2015 - link

    Where are the gaming benchmarks?
  • JohanAnandtech - Saturday, May 9, 2015 - link

    Is there still a game with software rendering? :-)
  • Gigaplex - Sunday, May 10, 2015 - link

    Llvmpipe on Linux gives a capable (feature wise) OpenGL implementation on the CPU.
  • Klimax - Saturday, May 9, 2015 - link

    Don't see POWER getting anywhere with that kind of TDP. There will be dearth of datacenters and other hosting locations retooling for such thing. And I suspect not many will even then take it as cooling and power costs will be damn too high.

    Problem is, IBM can't go lower with TDP as architecture features enabling such performance are directly responsible for such TDP. (Just L1 consumes 2W to keep few cycles latency at high frequency)

Log in

Don't have an account? Sign up now