Initial Thoughts

Since we are dealing with two drives, it makes sense to split the conclusion into two and I will start with the 845DC PRO. While all we have today is a performance preview, the 845DC PRO is turning out to be one of the best enterprise SATA SSDs that we have tested. With only 28% over-provisioning, the PRO offers the most consistent 4KB random write performance that we have seen to date. When you add the fact that the PRO is also rated at ten drive writes per day, it is shaping up to be an excellent drive for write intensive workloads.

Price Comparison - MSRP
Capacity 400GB 800GB
Samsung 845DC PRO $960 ($2.4/GB) $1,830 ($2.29/GB)
Intel SSD DC S3700 $729 ($1.82/GB) $1,459 ($1.82/GB)

While the performance is great, pricing could be more competitive. Intel's DC S3700 is considerably cheaper at both capacities and offers the same 10 drive writes per day endurance. The 845DC PRO does provide higher 4KB random write performance (~50K IOPS vs ~35K IOPS) and is a bit more consistent, but ultimately the workload determines whether the extra performance is worth the extra cost. For workloads where absolute performance is more important than capacity, the 845DC PRO is a better pick as it provides slightly more IOPS per dollar, but the S3700 still offers lower $/GB if capacity is a concern. Of course, as enterprise SSDs are usually bought in bulk, the prices may vary depending on the volume and the MSRPs listed here may not be fully accurate. 

Price Comparison - MSRP
Capacity 240GB 480GB 800/960GB
Samsung 845DC EVO $250 ($1.04/GB) $490 ($1.02/GB) $969 ($1.01/GB)
Intel SSD DC S3500 $219 ($0.91/GB) $439 ($0.91/GB) $729 ($0.91/GB)

While the 845DC EVO is not crafted for write-intensive workloads, it still provides very consistent random write performance, although obviously the performance is lower than the PRO's. The EVO is very comparable to Intel's SSD DC S3500 as both have random write IOPS of around 15K and even the consistencies are close to a match. Endurance wise both are rated at about 0.35 drive writes per day despite the fact that Samsung is using TLC NAND instead of MLC, so it is clear that Samsung is going directly after Intel's S3500 with the EVO. It is too early to make any final conclusions yet as the EVO is really designed for mixed and read-centric workloads, which are not included in our performance preview, but if the write performance consistency is any clue the EVO will be a tough competitor for Intel's S3500. 

Unfortunately I do not have an ETA for the full review yet. It will be a while, though, because testing an enterprise SSD takes a long time as the drive must be tested in steady-state to mimic a realistic scenario, and I need to test a bunch of older drives to have more data points. Moreover, there are some very interesting client drives coming in the next few weeks that will take priority, but the full review is coming along with our new enterprise SSD test suite. Today is a glimpse of some of the new things that we will be looking at, but the full suite will be way more extensive than what you have seen today. Stay tuned!

Performance Consistency - Standard Deviation
Comments Locked

31 Comments

View All Comments

  • Inds - Wednesday, February 4, 2015 - link

    Ok, this doesn't clear anything up. If my manufacturer is lying about the IOPS of my SSD, how do I figure out the real value?

    If they aren't lying about the 97,000 random read IOPS, how many megabytes per second is this for 4KB?

    What exactly is the formula? You never elaborate on this in the article beyond senseless ramble.

    First of all, how am I gonna know what the queue length even is? The way I see it on benchmark tests, low queue depths have lower MB/s than higher ones so this confuses the hell out of me.

    But okay, I wanna know how my 840 Evo will perform random reads in the worst case scenario and QD1 seems to be the worst case scenario according to all the benchmark evidence.

    In that case, I must time the QD by the latency. My latency I believe is 1 ms so my result is 1000. 1000 IOPS? Okay, so my 4KB random read speed will be 4 MB/s? That's nowhere close to the real result CrystalDiskMark shows.

Log in

Don't have an account? Sign up now