Initial Thoughts

Since we are dealing with two drives, it makes sense to split the conclusion into two and I will start with the 845DC PRO. While all we have today is a performance preview, the 845DC PRO is turning out to be one of the best enterprise SATA SSDs that we have tested. With only 28% over-provisioning, the PRO offers the most consistent 4KB random write performance that we have seen to date. When you add the fact that the PRO is also rated at ten drive writes per day, it is shaping up to be an excellent drive for write intensive workloads.

Price Comparison - MSRP
Capacity 400GB 800GB
Samsung 845DC PRO $960 ($2.4/GB) $1,830 ($2.29/GB)
Intel SSD DC S3700 $729 ($1.82/GB) $1,459 ($1.82/GB)

While the performance is great, pricing could be more competitive. Intel's DC S3700 is considerably cheaper at both capacities and offers the same 10 drive writes per day endurance. The 845DC PRO does provide higher 4KB random write performance (~50K IOPS vs ~35K IOPS) and is a bit more consistent, but ultimately the workload determines whether the extra performance is worth the extra cost. For workloads where absolute performance is more important than capacity, the 845DC PRO is a better pick as it provides slightly more IOPS per dollar, but the S3700 still offers lower $/GB if capacity is a concern. Of course, as enterprise SSDs are usually bought in bulk, the prices may vary depending on the volume and the MSRPs listed here may not be fully accurate. 

Price Comparison - MSRP
Capacity 240GB 480GB 800/960GB
Samsung 845DC EVO $250 ($1.04/GB) $490 ($1.02/GB) $969 ($1.01/GB)
Intel SSD DC S3500 $219 ($0.91/GB) $439 ($0.91/GB) $729 ($0.91/GB)

While the 845DC EVO is not crafted for write-intensive workloads, it still provides very consistent random write performance, although obviously the performance is lower than the PRO's. The EVO is very comparable to Intel's SSD DC S3500 as both have random write IOPS of around 15K and even the consistencies are close to a match. Endurance wise both are rated at about 0.35 drive writes per day despite the fact that Samsung is using TLC NAND instead of MLC, so it is clear that Samsung is going directly after Intel's S3500 with the EVO. It is too early to make any final conclusions yet as the EVO is really designed for mixed and read-centric workloads, which are not included in our performance preview, but if the write performance consistency is any clue the EVO will be a tough competitor for Intel's S3500. 

Unfortunately I do not have an ETA for the full review yet. It will be a while, though, because testing an enterprise SSD takes a long time as the drive must be tested in steady-state to mimic a realistic scenario, and I need to test a bunch of older drives to have more data points. Moreover, there are some very interesting client drives coming in the next few weeks that will take priority, but the full review is coming along with our new enterprise SSD test suite. Today is a glimpse of some of the new things that we will be looking at, but the full suite will be way more extensive than what you have seen today. Stay tuned!

Performance Consistency - Standard Deviation
Comments Locked

31 Comments

View All Comments

  • LiviuTM - Wednesday, September 3, 2014 - link

    Great article, Kristian.
    I enjoyed finding more about latency, IOPS and throughput and the relationship between them.

    Keep up the good work :)
  • Chapbass - Wednesday, September 3, 2014 - link

    I would like to echo this statement. Some of the heavy technical stuff makes my eyes glaze over at times, but this was so well written that I really got into it. Awesome article, Kristian.
  • romrunning - Wednesday, September 3, 2014 - link

    "The only difference between the 845DC EVO and PM853T is the firmware and the PM853T is geared more towards sustained workloads, which results in slightly higher random write speed (15K IOPS vs 14K IOPS)."

    Chart for PM853T shows 14K for Random Writes, so likely needs to be corrected.
  • Kristian Vättö - Wednesday, September 3, 2014 - link

    Good catch, I was waiting for Samsung to send me the full data sheet for the PM853T but I never got it, so I accidentally left the 845DC EVO specs there. I've now updated it with the specs I have and with some additional commentary.
  • JellyRoll - Wednesday, September 3, 2014 - link

    The only issue with calculating performance as listed on the first page is that it assumes that the SSD works perfectly in all aspects. No ECC, no wear leveling, no garbage collection. None of these are true. Even without those factors no SSD will ever behave absolutely perfectly in every aspect at all times....anything but. That is why there is so much variation between vendors. It would be impossible to calculate performance using that method with an SSD in the real world.
  • Kristian Vättö - Wednesday, September 3, 2014 - link

    Of course real world is always different because the transfer size and queue depth are constantly changing and no SSD behaves perfectly. I mentioned that it is a hypothetical SSD and obviously no real drive would have a constant latency of 1ms or perfect transfer size scaling. The goal was to demonstrate how the metrics are related and it is easier with concrete, albeit hypothetical, examples.
  • hrrmph - Wednesday, September 3, 2014 - link

    I think you nailed it on the theoretical stuff (the relationships between the parameters), and presented it well (easy to understand).

    This has been bugging me for a while too, although I won't pretend to have gotten it figured out - it's just that I keep getting pickier in my lab notes and shopping specs about things like queue depth for a given size transfer for the specified performance. Leave any condition or parameter out, and the specs seem kinda useless. Leave everything in, and then I wonder which ones are pertinent to my usage scenarios.

    Now, your explanation will have me questioning the manufacturer's motives for the selection of each unit of measure chosen for each listed spec. Who says this field of endeavor doesn't lead to obsession? :)

    If any of the specs *are* pertinent to my usage scenarios, then I wonder which ones are *most* pertinent for which of my usage scenarios (laptop, versus general desktop, versus high powered workstation).

    Any relationships that you discover or methods that you develop for the charts to help explain it better are most welcome. I know this is an over-simplification, but I would guess that most workstation users want to know:

    - Is my drive limiting my performance (why did that operation stutter or lag, or why does it take so long - was it the drive)?

    - Is there anything I can do about it that I can afford (mainly, what can I replace it with - new controller card, newer, better designed SSDs, better racks, cables, etc.)?

    I am pleased that you are helping us out by further dissecting performance consistency / variation. I suspect that although SSDs are an order of magnitude (or more) better than HDDs at many tasks, the "devil is in the details," and that there is a reason that many SSD equipped machines still "hiccup," fairly frequently (although not nearly as often or as bad as HDD equipped machines). I also suspect that drive sub-systems are still one of the most common weaker links that is responsible for such hiccups.

    I am particularly interested in the (usually) brutally difficult small file size tests. These tests seem to be able to bring even the best of machines to a crawl, and any device (ie: SSD) that can help performance on those tests seems to be very likely to be noticeable to the end user.

    If you do indeed find "let downs" in performance consistency (or any other drive related performance spec), then maybe the manufacturers will work to improve upon those weaknesses until we get "buttery smooth" performance...

    ...or at least until we can definitively start looking at other sub-systems (compute, memory, I/O, etc.) to solve the hiccups.

    My introductory courses were on 8086 computers running DOS. I don't remember them often stopping to think about anything... until I started "hitting" the disks heavily. The more things change, the more I suspect they stay the same ;)

    So I keep allocating more of my budget to disks and disk sub-systems than anything else. AT's articles are thus *very* helpful in "aiming" that budget and I hope you have some revelations for us soon that show which products are worth the money.
  • iwod - Wednesday, September 3, 2014 - link

    I have been wondering for a bit, why hasn't Enterprise switched to some other interconnect? Surely they could do PCI-E have have it directly connected to the CPU. ( Assuming they dont need those for GPU or other things ).

    And I have been Samsung being extremely aggressive with the web hosting market. Where Intel is lacking behind.
  • FunBunny2 - Wednesday, September 3, 2014 - link

    "real" enterprise has been running SAS and FibreChannel for rather a long time. InfiniBand every now and again. To the extent that enterprise buys X,000 drives to parcel out to offices and such, then that's where the SATA drives go. But that's not really enterprise storage. Real enterprise SSD/flash/etc. doesn't have a list price (well, only in the sense that your car did) and I'd wager that not one of the enterprise SSD/flash companies (and no, Intel doesn't count) has ever offered up a sample to AnandTech.
  • rossjudson - Thursday, September 4, 2014 - link

    Fusion-io (and others) have been doing precisely this (PCIe connected flash storage) for a number of years. They are currently producing modules with up to 6TB of storage.

Log in

Don't have an account? Sign up now