• What
    is this?
    You've landed on the AMD Portal on AnandTech. This section is sponsored by AMD. It features a collection of all of our independent AMD content, as well as Tweets & News from AMD directly. AMD will also be running a couple of huge giveaways here so check back for those.
    PRESENTED BY

While AMD and NVIDIA are consistently revising their GPU architectures, for the most part the changes they make are just that: revisions. It’s only once in a great while that a GPU architecture is thrown out entirely, which makes the arrival of a new architecture a monumental occasion in the GPU industry. The last time we saw this happen was in 2006/2007, when unified shaders and DirectX 10 lead to AMD and NVIDIA developing brand new architectures for their GPUs. Since then there have been some important revisions such as AMD’s VLIW4 architecture and NVIDIA’s Fermi architecture, but so far nothing has quite compared to 2006/2007, until now.

At AMD’s Fusion Developer Summit 2011 AMD announced Graphics Core Next, their next-generation GPU architecture. GCN would be AMD’s Fermi moment, where AMD got serious about GPU computing and finally built an architecture that would serve as both a graphics workhorse and a computing workhorse. With the ever increasing costs of high-end GPU development it’s not enough to merely develop graphics GPUs, GPU developers must expand into GPU computing in order to capture the market share they need to live well into the future.

At the same time, by canceling their 32nm process TSMC has directed a lot of hype about future GPU development onto the 28nm process, where the next generation of GPUs would be developed. In an industry accustomed to rapid change and even more rapid improvement never before have GPU developers and their buyers had to wait a full 2 years for a new fabrication process to come online.

All of this has lead to a perfect storm of anticipation for what has become the Radeon HD 7970: not only is it the first video card based on a 28nm GPU, but it’s the first member of the Southern Islands and by extension the first video card to implement GCN. As a result the Radeon HD 7970 has a tough job to fill, as a gaming card it not only needs to deliver the next-generation performance gamers expect, but as the first GCN part it needs to prove that AMD’s GCN architecture is going to make them a competitor in the GPU computing space. Can the 7970 do all of these things and live up to the anticipation? Let’s find out…

AMD GPU Specification Comparison
  AMD Radeon HD 7970 AMD Radeon HD 6970 AMD Radeon HD 6870 AMD Radeon HD 5870
Stream Processors 2048 1536 1120 1600
Texture Units 128 96 56 80
ROPs 32 32 32 32
Core Clock 925MHz 880MHz 900MHz 850MHz
Memory Clock 1.375GHz (5.5GHz effective) GDDR5 1.375GHz (5.5GHz effective) GDDR5 1.05GHz (4.2GHz effective) GDDR5 1.2GHz (4.8GHz effective) GDDR5
Memory Bus Width 384-bit 256-bit 256-bit 256-bit
Frame Buffer 3GB 2GB 1GB 1GB
FP64 1/4 1/4 N/A 1/5
Transistor Count 4.31B 2.64B 1.7B 2.15B
Manufacturing Process TSMC 28nm TSMC 40nm TSMC 40nm TSMC 40nm
Price Point $549 $350 $160 -

The Radeon HD 7970 is a card of many firsts. It’s the first video card using a 28nm GPU. It’s the first card supporting Direct3D 11.1. It’s the first member of AMD’s new Southern Islands Family. And it’s the first video card implementing AMD’s Graphics Core Next architecture. All of these attributes combine to make the 7970 quite a different video card from any AMD video card before it.

Cutting right to the chase, the 7970 will serve as AMD’s flagship video card for the Southern Islands family. Based on a complete AMD Tahiti GPU, it has 2048 stream processors organized according to AMD’s new SIMD-based GCN architecture. With so many stream processors coupled with a 384bit GDDR5 memory bus, it’s no surprise that Tahiti is has the highest transistor count of any GPU yet: 4.31B transistors. Fabricated on TSMC’s new 28nm High-K process, this gives it a die size of 365mm2, making it only slightly smaller than AMD’s 40nm Cayman GPU at 389mm2.

Looking at specifications specific to the 7970, AMD will be clocking it at 925MHz, giving it 3.79TFLOPs of theoretical computing performance compared to 2.7TFLOPs under the much different VLIW4 architecture of the 6970. Meanwhile the wider 384bit GDDR5 memory bus for 7970 will be clocked at 1.375GHz (5.5GHz data rate), giving it 264GB/sec of memory bandwidth, a significant jump over the 176GB/sec of the 6970.

These functional units are joined by a number of other elements, including 8 ROP partitions that can process 32 ROPs per clock, 128 texture units divided up among 32 Compute Units (CUs), and a fixed function pipeline that contains a pair of AMD’s 9th generation geometry engines. Of course all of this hardware would normally take quite a bit of power to run, but thankfully power usage is kept in check by the advancements offered by TSMC’s 28nm process. AMD hasn’t provided us with an official typical board power, but we estimate it’s around 220W, with an absolute 250W PowerTune limit. Meanwhile idle power usage is looking particularly good, as thanks to AMD's further work on power savings their typical power consumption under idle is only 15W. And with AMD's new ZeroCore Power technology (more on that in a bit), idle power usage drops to an asbolutely miniscule 3W.

Overall for those of you looking for a quick summary of performance, the 7970 is quite powerful, but it may not be as powerful as you were expecting. Depending on the game being tested it’s anywhere between 5% and 35% faster than NVIDIA’s GeForce GTX 580, averaging 15% to 25% depending on the specific resolution in use. Furthermore thanks to TSMC’s 28nm process power usage is upwards of 50W lower than the GTX 580, but it’s still higher than the 6970 it replaces. As far as performance jumps go from new fabrication processes, this isn’t as big a leap as we’ve seen in the past.

In a significant departure from the launch of the Radeon HD 5870 and 4870, AMD will not be pricing the 7970 nearly as aggressively as those cards with its launch. The MSRP for the 7970 will be $550, a premium price befitting a premium card, but a price based almost exclusively on the competition (e.g. the GTX 580) rather than one that takes advantage of cheaper manufacturing costs to aggressively undercuts the competition. In time AMD needs to bring down the price of the card, but for the time being they will be charging a price premium reflecting the card’s status as the single-GPU king.

For those of you trying to decide whether to get a 7970, you will have some time to decide. This is a soft launch; AMD will not make the 7970 available until January 9th (the day before the Consumer Electronics Show), nearly 3 weeks from now. We don’t have any idea what the launch quantities will be like, but from what we hear TSMC’s 28nm process has finally reached reasonable yields, so AMD should be in a better position than the 5870 launch. The price premium on the card will also help taper demand side some, though even at $550 this won’t rule out the first batch of cards selling out.

Beyond January 9th, AMD as an entire family of Southern Islands video cards still to launch. AMD will reveal more about those in due time, but as with the Evergreen and Northern Islands families AMD has a plan to introduce a number of video cards over the next year. So 7970 is just the beginning.

Winter 2011 GPU Pricing Comparison
AMD Price NVIDIA
  $750 GeForce GTX 590
Radeon HD 6990 $700  
Radeon HD 7970 $549  
  $500 GeForce GTX 580
Radeon HD 6970 $350 GeForce GTX 570
Radeon HD 6950 2GB $250  
  $240 GeForce GTX 560 Ti
Radeon HD 6870 $160  

 

A Quick Refresher: Graphics Core Next
POST A COMMENT

291 Comments

View All Comments

  • CeriseCogburn - Thursday, March 08, 2012 - link

    Finally, piroroadkill, Esbornia - the gentleman ericore merely stated what all the articles here have done as analysis while the radeonite fans repeated it ad infinitum screaming nvidia's giant core count doesn't give the percentage increase it should considering transistor increase.
    Now, when it's amd's turn, we get ericore under 3 attacks in a row...---
    So you three all take it back concerning fermi ?
    Reply
  • maverickuw - Thursday, December 22, 2011 - link

    I want to know when the 7950 will come out and hopefully it'll come out at $400 Reply
  • duploxxx - Thursday, December 22, 2011 - link

    Only the fact that ATI is able to bring a new architecture on a new process and result in such a performance increase for that power consumption is a clear winner.

    looking at the past with Fermy 1st launch and even Cayman VLIW4 they had much more issues to start with.

    nice job, while probably nv680 will be more performing it will take them at least a while to release that product and it will need to be also huge in size.
    Reply
  • ecuador - Thursday, December 22, 2011 - link

    Nice review, although I really think testing 1680x1050 for a $550 is a big waste of time, which could have to perhaps multi-monitor testing etc. Reply
  • Esbornia - Thursday, December 22, 2011 - link

    Its Anand you should expect this kind of shiet. Reply
  • Ryan Smith - Thursday, December 22, 2011 - link

    In this case the purpose of 1680 is to allow us to draw comparisons to low-end cards and older cards, which is something we consider to be important. The 8800GT and 3870 in particular do not offer meaningful performance at 1920. Reply
  • poohbear - Thursday, December 22, 2011 - link

    Why do you bencmark @ 1920x1200 resolution? according to the Steam December survey only 8% of gamers have that resolution, whereas 24% have 1920x1080 and 18% use 1680x1050 (the 2 most popular). Also, minimum FPS would be nice to know in your benchmarks, that is really useful for us! just a heads up for next time u benchmark a video card! Otherwise nice review! lotsa good info at the beginning!:) Reply
  • Galcobar - Thursday, December 22, 2011 - link

    Page 4, comments section. Reply
  • Esbornia - Thursday, December 22, 2011 - link

    They dont want to show the improvements on min FPS cause they hate AMD, you should know that already. Reply
  • Ryan Smith - Thursday, December 22, 2011 - link

    Since 1920x1200 has already been commented on elsewhere I'm just going to jump right to your comment on minimum FPS.

    I completely agree, and we're trying to add it where it makes sense. A lot of benchmarks are wildly inconsistent about their minimum FPS, largely thanks to the fact that minimum FPS is an instantaneous data point. When your values vary by 20%+ per run (as minimums often do), even averaging repeated trials isn't nearly accurate enough to present meaningful results.
    Reply

Log in

Don't have an account? Sign up now