Closing Thoughts: Qualcomm’s Competition

For the most part, five/six major names in this space are competing for the bulk of data center business: Intel, AMD, IBM, Cavium, and now Qualcomm. The first two are based in the omnipresent x86 architecture and are using different microarchitecture designs to account for most of the market (and Intel is most of that).

Intel’s main product is the Xeon Scalable Processor Family, launched in July, and builds on a new version of their 6th Generation core design by increasing the L2 cache, adding support for AVX-512, moving to an internal mesh topology, and offering up to 28 cores with 768 GB/DRAM per socket (up to 1.5TB with special models). Omnipath versions are also available, and the chipset ecosystem can add support for 10 gigabit Ethernet natively, at the expense of PCIe lanes. Xeon systems can be designed with up to 8 sockets natively, depending on the processor used (and cost). Interested customers can buy these parts today from OEMs.

Intel also has the latest generation of Atom cores, found in the new Denverton products. While Intel doesn’t necessarily promote these cores for the data center, some OEMs such as HP have developed ‘Moonshot’ style of deployments that place up to 60 SoCs with up to 8 cores each in a single server (which can move up to 16 cores per SoC with Denverton).

AMD meanwhile launched their attack back on the high-end server market earlier this year with EPYC. This product uses their new high-performance Zen microarchitecture, and implements a multi-silicon die design to supports up to 32 cores and 2 TB of DRAM per socket. By implementing their new Infinity Fabric technology, AMD is promoting a wide bandwidth product that despite the multi-silicon design is engineered with strong FP units and plenty of memory and IO bandwidth. Each EPYC processor offers 128 PCIe lanes for add-in cards or storage, and can use 64 PCIe lanes to connect to a second socket, offering 64 cores/128 threads with 4TB of DRAM and 128 PCIe lanes in a 2P system. AMD is slowly rolling out EPYC to premium customers first, with wider availability during the second half of 2017.

IBM is perhaps the odd-one out here, but due to the size is hard to ignore. IBM’s POWER architecture, and subsequent POWER8 and upcoming POWER9 designs, aim heavily on the ‘more of everything’ approach. More cores, wider cores, more threads per core, more frequency, and more memory, which translates to more cost and more energy. IBM’s partners can have custom designs of the microarchitecture implementation depending on their needs, as IBM tends to focus on the more mission critical mainframe infrastructure, but is slowly attempting to move into the traditional data center market. Large numbers such as ‘5.2 GHz’ can be enough to cause potential customers do a double take and analyze what IBM has to offer. We’ve tested IBM’s base POWER8 in the lab, and POWER9 is just around the corner.

Cavium is the most notable public player using ARM designs in commercial systems so far (there are a number of non-public players focusing on niche scenarios, or whom have little exposure outside of China). The original design, the Cavium ThunderX, uses a custom ARMv8 core, and is designed to provide large numbers of small CPU cores with as much memory bandwidth and IO as possible. For a design that uses relatively simple 2 instruction-per-clock CPU cores, the ThunderX chips are quite large, and Cavium is positioning that product in the high performance networking market as well as environments where core counts matter than peak performance, as seen in our review which pegged per-core performance at the level of Intel’s Atom chips. The newer ThunderX2 is aiming at HPC workloads, so it will focus more on higher per-core performance. With ARM having recently announced the A75 and A55 cores under the DynamIQ banner, we’re expecting Cavium’s future designs to use a number of new design choices.

So now Qualcomm enters the fray with the Centriq 2400 family, using Falkor cores, aiming to go above Cavium and push into the traditional x86 and data center arena where others have tried and got stuck into a bit of a quagmire. Qualcomm is hoping that its expertise within the ARM ecosystem, as well as the clout of the new product, will be something that the Big Seven Plus One cannot ignore. One big hurdle is that this space is traditionally x86, so moving to ARM requires potential code changes and recompiling that will lose potential software efficiency developed over a decade. Also the Windows Server market, which Qualcomm is solving with Microsoft with a form of x86 emulation. Much like we have been hearing about Windows 10 on Qualcomm’s Snapdragon 835 mobile chipsets, Qualcomm is going to be supporting Windows Server on Centriq 2400-series SoCs.

Wrapping thigns up, while Qualcomm has given us more information than we expected, we’d still love to hear exact numbers for L2 and L3 cache sizes, die sizes, TDPs, frequencies (we’ve been told >2.0 GHz with no turbo modes), the different SKUs coming to market, and confirmation about which foundry partner they are using.  Qualcomm will also have to be wary about ensuring sufficient support on all operating systems for customers that are interested, especially if this hardware migrates out of the specific customer set that are amenable to testing new platforms.

The Centriq 2400 family is currently being sampled in data centers, and moving into production by the end of 2017. The media sample timeframe unknown, however we're hoping we can get one in for testing before too long.

Getting Intimate with Falkor: The Back End
Comments Locked

41 Comments

View All Comments

  • SarahKerrigan - Sunday, August 20, 2017 - link

    "Cavium is the most notable public player using ARM designs in commercial systems so far (there are a number of non-public players focusing on niche scenarios, or whom have little exposure outside of China). The latest design, the Cavium ThunderX2, uses the main A-series core licenses and interconnect license from ARM to provide large numbers of mobile-class CPU cores with as much memory bandwidth and IO as possible."

    This is not even remotely true. Neither Cavium's cores nor Cavium's interconnect (CCPI predates Cavium's jump to ARM) are ARM IP - they're using an architectural license, *not* IP blocks (or at least, not those ones.) ThunderX uses custom Cavium cores that are between A53 and A57 in performance, while ThunderX2 uses a small number of cores (32) based on the XLP/Vulcan design they bought from Broadcom.

    To make that last part more confusing, Cavium initially announced a *different* ThunderX2, which was an enhanced (54-core) derivative of the original ThunderX design. This seems to have been killed when the Vulcan uarch was licensed, or at least has not been heard from since.
  • Ian Cutress - Sunday, August 20, 2017 - link

    That's my fault, I wrote this while flying and thought I had known what is under the hood on ThunderX. Johan actually did a good write up on this, and I'll edit the piece here appropriately.

    http://www.anandtech.com/show/10353/investigating-...
  • SarahKerrigan - Sunday, August 20, 2017 - link

    "uses the architecture licence for the main A-series core from ARM"

    That makes even less sense. A-series cores don't factor into it. ThunderX is custom.
  • name99 - Sunday, August 20, 2017 - link

    Is this public knowledge (original ThunderX2 killed, new ThunderX2 based on Vulcan)?
    I know it's public that (beginning of this year) Cavium acquired Vulcan IP, but I'd not heard anything beyond that. ThunderX2 is supposed to ship Q3 this year (ie RSN...) which to me suggests they're too far along to drop it, and Vulcan will be the basis of ThunderX3.
  • SarahKerrigan - Sunday, August 20, 2017 - link

    Yes. There have been a number of commits to LLVM, etc, indicating that ThunderX2 is now Vulcan. Cf the ThunderX2 LLVM model, which straight-up says "Based on Broadcom Vulcan."

    I don't know whether the original TX2 design is fully dead or merely mostly dead, but it's pretty obvious at this point that a Vulcan-based TX2 is coming.
  • SigismundBlack - Sunday, August 20, 2017 - link

    Thanks for the info.

    Denverton rather than 'Denveron'.

    Since the C3000 Atom series is cited here re it's also seems worth mentioning AMDs low power server SOCs (e.g. X3421) which likewise feature in recent Moonshot systems and home/SOHO servers.
  • jameskatt - Sunday, August 20, 2017 - link

    The biggest problem I see is if Qualcomm is going to be devoting resources for this project for the long-term. Businesses require stability, predictability, and long-term support. Qualcomm's competitors have been in the business for decades and will be in the business for decades. Qualcomm can't prove they will be in the business for decades to come particularly if they make no money on it.
  • Kevin G - Sunday, August 20, 2017 - link

    Qualcomm has been around for awhile so there is stability there. They are new to the ARM server market though because, well after many false starts this market appears to finally be emerging. Even though Qualcomm is just launching this chip, it would be beneficial to them to discuss a roadmap to bring some long term stability to the scene.
  • Wardrive86 - Sunday, August 20, 2017 - link

    Surely Qualcomm is using SVE and not regular NEON units. I wish they would expose how wide the units are. I'm very excited they were so open about their architecture. Great write up Ian as well!
  • Dmcq - Sunday, August 20, 2017 - link

    I doubt it. SVE is a biggie and was only announced recently, I can't see that Qualcomm would bother risking trying to put it in their first server chip.

Log in

Don't have an account? Sign up now