Gaming Benchmarks: Integrated Graphics Overclocked

Given the disappointing results on the Intel HD 530 graphics when the processor was overclocked, the tables were turned and we designed a matrix of both CPU and IGP overclocks to test in our graphics suite. So for this we still take the i7-6700K at 4.2 GHz to 4.8 GHz, but then also adjust the integrated graphics from 'Auto' to 1250, 1300, 1350 and 1400 MHz as per the automatic overclock options found on the ASRock Z170 Extreme7+.

Technically Auto should default to 1150 MHz in line with what Intel has published as the maximum speed, however the results on the previous page show that this is more of a see-saw operation when it come to power distribution of the processor. With any luck, actually setting the integrated graphics frequency should maintain that frequency throughout the benchmarks.  With the CPU overclocks as well, we can see how it scales with added CPU frequency.

Results for these benchmarks will be provided in matrix form, both as absolute numbers and as a percentage compared to the 4.2 GHz CPU + Auto IGP reference value. Test settings are the same as the previous set of data for IGP.

Absolute numbers

Percentage Deviation from 4.2 GHz / Auto

Conclusions on Overclocking the IGP

It becomes pretty clear that by fixing the frequency of the integrated graphics, there is for the most part no longer the detrimental effect when you overclock the processor, or at least the reduction in performance to the same degree (which falls within standard error). On three of the games, fixing the integrated graphics to 1250 Mhz nets ~10% boost in performance, which for titles like Attila extends to 23% at 1400 MHz. By contrast, GTA V shows only a small gain, indicating that we are perhaps limited in other ways.

Gaming Benchmarks: Integrated Graphics Gaming Benchmarks: Discrete Graphics
Comments Locked

103 Comments

View All Comments

  • StrangerGuy - Sunday, August 30, 2015 - link

    If we keep dropping the OC multi on Skylake we are going into single-digit clock increases territory from 4GHz stock :)

    Yeah, I wonder why AT mentioned in their Skylake review about why people are losing interest in OCing despite Intel's claims of catering to it. From the looks of it, their 14nm process simply isn't tuned for 4GHz+ operation but towards the lower clocked but much more lucrative chips for the server and mobile segment.
  • qasdfdsaq - Wednesday, September 2, 2015 - link

    Then you are deluded. There are edge cases and scenarios that will cause a hardware crash on a Xeon server with ECC RAM at stock speeds, so by your reckoning *nothing* is ever 100% stable.
  • danjw - Friday, August 28, 2015 - link

    When can we expect a platform overview? You reviewed the i7-6700K, but you didn't have much in details about them. You were expecting that from IDF. IDF is over, so is there an ETA?
  • MrBowmore - Friday, August 28, 2015 - link

    +1
  • hansmuff - Friday, August 28, 2015 - link

    I assume the POV-Ray score is the "Render averaged PPS"?
    My 2600K @4.4 gets 1497 PPS, so a 35% improvement compared to 6700k @4.4
  • hansmuff - Friday, August 28, 2015 - link

    And of course I mean the 6700k seems to be 35% faster in POV... sigh this needs an edit button
  • looncraz - Saturday, August 29, 2015 - link

    POV-Ray has been seeing outsized performance improvements on Intel.

    From Sandy Bridge to Haswell sees a 20% improvement, when the overall improvement is closer to 13%.

    HandBrake improved even more - a whopping 29% from Sandy Bridge to Haswell.

    And, of course, I'm talking core-for-core, clock-for-clock.

    I suspect much of this improvement is related to the AVX/SIMD improvements.

    Just hope AMD focused on optimizing for the big benchmark programs as well as their server target market with Zen (this is past tense since Zen is being taped out and currently being prototyped.. rumors and some speculation, of course, but probably pretty accurate).
  • zepi - Sunday, August 30, 2015 - link

    One has to remember, that "handbrake" doesn't actually use CPU-resources at all. The process that is actually benchmarked is running x264 codec with certain settings easily accessible by using GUI called handbrake.

    If x264 or x265 programmers create new codepaths inside the codecs that take benefit of new architecture, it received huge performance gains. But what this actually means is that Sandy Bridge and Skylake actually run different benchmarks with different instructions fed to processors.

    Do I care? No, because I just want my videos to be transcoded as quickly as possible, but one should still remember that this kind of real world benchmarks don't necessarily run same workloads on different processors.
  • MrBowmore - Friday, August 28, 2015 - link

    When are you going to publish the runthrough of the architechture?! Waiting impatiently! :)
  • NA1NSXR - Friday, August 28, 2015 - link

    Sigh, still no BCLK comparisons at same clocks. What would really answer some unanswered questions would be comparing 100 x 40 to 200 x 20 for example.

Log in

Don't have an account? Sign up now