Putting It All Together: Small Core M

Next to power constraints, the final element of Intel’s fanless challenge is the size of the SoC itself. Sub-10mm thickness doesn’t just put constraints on the heat capacity of the device but it also constrains just how large an SoC and its supporting circuitry can be. As a result Intel has focused on making Broadwell-Y the smallest Core processor yet, making the entire SoC under 500mm2 in size.

As was the case with power, reducing the size of Broadwell-Y is a multi-faceted effort. The 14nm process plays a big part here, allowing for one of the smallest Core CPU dice yet. At 82mm2 the Broadwell-Y CPU die is some 37% smaller than the Haswell-Y CPU die, none the less packing a dual-core CPU and a full GPU slice.

With such a small die Intel was in turn able to reduce the size of the entire SoC package through the combination of the reduced die area and further optimizations to the packaging itself. Haswell-Y’s already small ball pitch of .65mm was further reduced to just .5mm, producing a package with Intel’s smallest solder ball pads yet. Intel considers the reduction in the ball pitch to be the key change that allowed Broadwell-Y to be so small, as they were already pad-limited on Haswell-Y despite having ample excess packaging even after taking the CPU die’s larger size into account. As a result Broadwell-Y takes up almost 50% less surface area (XY) than Haswell-Y.

Intel has also made a number of changes for Broadwell-Y to reduce the Z-height of the Y SoCs, as even 1.5mm for the SoC starts to become a significant design constraint in a sub-10mm device. Again owing to the 14nm process, the Z-height of the Broadwell-Y die itself is down to 170um. Meanwhile the Z-height of the substrate has been cut in half from 400um to 200um, which accounts for nearly half of the total reduction in SoC Z-height.

The final element in reducing the SoC Z-height, and what’s likely the most unorthodox change for Broadwell-Y’s packaging, is Intel’s 3DL inductors. The 3DLs aren’t just to improve energy efficiency as we discussed before, but they are part of Intel’s efforts to reduce the SoC size. For Broadwell-Y the 3DLs are on their own PCB on the back of the SoC, extending well below the back of the package. To accommodate this, logic boards housing Broadwell-Y will have a hole in them where the 3DL PCB would be in order to allow the complete SoC to fit. Because there are no BGA connections here this change isn’t quite as radical as it first appears, but it’s a very good example of just what lengths Intel was willing to go to reduce the package Z-height.

All told then, the combination of these space optimizations has reduced Broadwell-Y’s Z-height by nearly 30%, from 1.5mm on Haswell-Y to 1.04mm on Broadwell-Y (3DL PCB not included). By bringing Broadwell-Y’s thickness under 1.1mm, the SoC is now no taller than the other common components on a logic board (e.g. RAM), meaning the SoC will no longer stick out above the other components, which is useful both for saving space and for allowing simpler (flatter) heatsinks.

Finally, the smaller size of the Broadwell-Y package will also have a knock-on effect on the size of the logic board, further feeding into Intel’s goals to get Broadwell-Y into smaller devices. Intel tells us that the size of a complete platform (logic) board for Broadwell-Y has been reduced by roughly 25% as compared to Haswell-Y, allowing Broadwell-Y to better fit into not just thinner devices but overall smaller devices too.

Putting It All Together: Low Power Core M Closing Thoughts
Comments Locked

158 Comments

View All Comments

  • Hrel - Tuesday, August 12, 2014 - link

    ". Intel has made it clear that they don’t regress on clockspeeds"

    lol, they often regress on clockspeeds.
  • nikolayo - Wednesday, August 13, 2014 - link

    This sounds as a distraction meant to divert attention from the fact that Intel is about a year late with 14nm. It seems than the Moore's law will stop working quite soon. I would still bet on Intel being able to implement 10nm but that will likely be the end of the road for the current technology. And there is no clearly visible path beyond that. Not that progress will stop but it may slow down to the pace we observe e.g. in car design and production rather than what we are used to expect in chip design and production.
  • asoltesz - Wednesday, August 20, 2014 - link

    Car design and production is being turned upside down by electric cars like Tesla.

    Apart from the comparisson, you may be right.
  • lagittaja - Wednesday, August 13, 2014 - link

    Honestly. After reading the article. Which was really a good read and huge thanks to Ryan. All I can say is. Amazing. That is all.
  • Oxford Guy - Thursday, August 14, 2014 - link

    "Intel’s solution to this problem is both a bit brute force and a bit genius, and is definitely unlike anything else we’ve seen on PC GPUs thus far. Since Intel can’t reduce their idle voltage they are going to start outright turning off the GPU instead;"

    That qualifies as genius these days? The most obvious method to reduce a GPU's power consumption is to turn it off.
  • c plus plus - Saturday, August 16, 2014 - link

    intel is really amazing and i hope broadwell doubles both gpu and cpu performance with the help of magic
  • Mr Pras - Tuesday, August 19, 2014 - link

    I liked the comments in this thread but was disturbed by the fan boys. Just because there was an amd marketer here doesn't mean that we should resort to intel worship. At least for me, those discussions are totally moot in this thread.
  • Blaiser - Wednesday, September 17, 2014 - link

    Can somebody clarify this for me?

    Broadwell Core M is supposed to support fanless designs. Will Broadwell-U support fanless as well? Meaning will high end laptops with Broadwell-U be fanless? If not, will Skylake be able to have high end machines be fanless?

Log in

Don't have an account? Sign up now