System Benchmarks

Rightmark Audio Analyzer 6.2.5

The premise behind Rightmark:AA is to test the input and output of the audio system to determine noise levels, range, harmonic distortion, stereo crosstalk and so forth. Rightmark:AA should indicate how well the sound system is built and isolated from electrical interference (either internally or externally). For this test we connect the Line Out to the Line In using a short six inch 3.5mm to 3.5mm high-quality jack, turn the OS speaker volume to 100%, and run the Rightmark default test suite at 192 kHz, 24-bit. The OS is tuned to 192 kHz/24-bit input and output, and the Line-In volume is adjusted until we have the best RMAA value in the mini-pretest. We look specifically at the Dynamic Range of the audio codec used on board, as well as the Total Harmonic Distortion + Noise.

Dynamic Range of the GIGABYTE GA-6PXSV3

Rightmark: AA, Dynamic Range, 24-bit / 192 kHz

Rightmark: AA, THD+N, 24-bit / 192 kHz

Being a server motherboard, we were not expecting any superior sound quality. GIGABYTE are using a Realtek ALC892 codec which represents the bottom of the ‘expected’ range for any consumer level motherboard priced above $100. These results are in line with what we expect with this chip.

USB Backup

For this benchmark, we run CrystalDiskMark to determine the ideal sequential read and write speeds for the USB port using our 240 GB OCZ Vertex3 SSD with a SATA 6 Gbps to USB 3.0 converter. Then we transfer a set size of files from the SSD to the USB drive using DiskBench, which monitors the time taken to transfer. The files transferred are a 1.52 GB set of 2867 files across 320 folders – 95% of these files are small typical website files, and the rest (90% of the size) are the videos used in the WinRAR test. In an update to pre-Z87 testing, we also run MaxCPU to load up one of the threads during the test which improves general performance up to 15% by causing all the internal pathways to run at full speed.

USB 2.0 Copy TimesUSB 3.0 Copy Times

DPC Latency

Deferred Procedure Call latency is a way in which Windows handles interrupt servicing. In order to wait for a processor to acknowledge the request, the system will queue all interrupt requests by priority. Critical interrupts will be handled as soon as possible, whereas lesser priority requests, such as audio, will be further down the line. So if the audio device requires data, it will have to wait until the request is processed before the buffer is filled. If the device drivers of higher priority components in a system are poorly implemented, this can cause delays in request scheduling and process time, resulting in an empty audio buffer – this leads to characteristic audible pauses, pops and clicks. Having a bigger buffer and correctly implemented system drivers obviously helps in this regard. The DPC latency checker measures how much time is processing DPCs from driver invocation – the lower the value will result in better audio transfer at smaller buffer sizes. Results are measured in microseconds and taken as the peak latency while cycling through a series of short HD videos - less than 500 microseconds usually gets the green light, but the lower the better.

DPC Latency Maximum

We tested the latency of the GA-6PXSV3 on three different CPUs, and surprisingly the Core i7 consumer CPU scored the worst value.

2014 Test Setup, Power Consumption, POST Time Real World CPU Benchmarks
Comments Locked

12 Comments

View All Comments

  • Navvie - Thursday, April 3, 2014 - link

    People buy motherboards based on how they look? Sheesh, I'm getting old.
  • superunknown98 - Thursday, April 3, 2014 - link

    I unfortunately just found out the 82574L nic is not supported by intel in server 2012 r2. Microsoft drivers only.

Log in

Don't have an account? Sign up now