Overclocking: When Headroom Exceeds Clockspeed Limits

Last but not least we have our customary look at overclocking performance. With all 3 of our cards being based on the same reference design, we expect to see some relatively consistent results between the cards. At the same time NVIDIA has told us that GTX 750 has some very interesting overclocking properties, and boy they weren’t kidding.

On a quick note, as a GPU Boost 2.0 product, overclocking on the GTX 750 series is not any different than on other GTX 700 series cards. It’s still based on offset overclocking, with the user adjusting offsets for the final overclock. But with that said there are two things to point out. The first is that the power target is limited to 100% on all cards. Because these are sub-75W cards, NVIDIA is not allowing anyone to exceed the card’s default TDP, so you only have as much power to play with as you started with. Second of all, none of our cards had available overvoltage bins. Apparently some cards do, but ours did not, so our voltage bins maxed out at the default bins you see listed.

Finally, all 3 cards have a maximum clock offset of 135MHz. This will be an important fact in a little bit.

GeForce GTX 750 Series Overclocking
  GTX 750 Ti (Ref) Zotac GTX 750 Ti Zotac GTX 750
Shipping Core Clock 1020MHz 1033MHz 1033MHz
Shipping Max Boost Clock 1150MHz 1175MHz 1163MHz
Shipping Memory Clock 5.4GHz 5.4GHz 5.0GHz
Shipping Max Boost Voltage 1.168v 1.137v 1.187v
       
Overclock Core Clock 1155MHz 1168MHz 1168MHz
Overclock Max Boost Clock 1285MHz 1310MHz 1298MHz
Overclock Memory Clock 6.3GHz 6.1GHz 6.0GHz
Overclock Max Boost Voltage 1.168v 1.137v 1.187v

As we can quickly see, two patterns emerge. The first is that with every card equipped with 6GHz memory (though we remain unsure which mode the Zotac GTX 750’s is in), each and every card hits at least 6GHz, and sometimes a bit more. With the 128-bit memory bus generally providing the biggest bottleneck for GM107, the fact that there is 12%+ overclocking headroom here is going to be very helpful in feeding the tiny beast that is GM107.

More significantly however is the core overclock. We maxed out every single one. Every card, from the NVIDIA reference card to the Zotac cards, had no trouble overclocking by the full 135MHz to their respective maximum overclocks. The Zotac GTX 750 Ti, having the highest maximum boost clock by default, is technically the winner here at 1310MHz. But at this point everyone is a winner. Going by the maximum boost clock, every card is capable of an 11% core overclock, to go with that tasty 12% memory overclock.

The fact of the matter is that this is not something we normally encounter. Sub-75W cards are not poor overclockers, but they’re not usually strong overclockers either, which is why a 135MHz offset limit makes sense at first glance. But it’s clear that NVIDIA underestimated their own overclocking potential here when setting the specifications for these cards, as there’s seeming some headroom left untapped. Without additional offset room it’s impossible to say just how much more overclocking headroom remains – it may not be very much – but there should be room for at least some additional overclocking.

At this point with cards already in the pipeline we’ll have to take a look at individual cards and see what manufacturers have set their offset limits at. If they have followed NVIDIA’s specifications, then they’ll be equally limited. But hopefully with the launch now behind them, NVIDIA’s partners can work with NVIDIA on making greater offsets available on newer batches of cards.

Metro: Last Light - 1920x1080 - High Quality

Company of Heroes 2 - 1920x1080 - High Quality + Low AA

Company of Heroes 2 - Min. Frame Rate - 1920x1080 - High Quality + Low AA

Bioshock Infinite - 1920x1080 - Ultra Quality + DDoF

Battlefield 4 - 1920x1080 - High Quality

Crysis 3 - 1920x1080 - Medium Quality + FXAA

Depending on the game being used, the benefits from overclocking range from 9% to 12%, roughly in-line with our overclocks. For the GTX 750 this is sometimes enough to catch the stock clocked R7 260X, but even with this overclock the GTX 750 Ti will still generally trail the R7 265.

Load Power Consumption - Crysis 3

Load Power Consumption - FurMark

Load GPU Temperature - Crysis 3

Load GPU Temperature - FurMark

Load Noise Levels - Crysis 3

Load Noise Levels - FurMark

On the other hand, because of the hard TDP limit of 100%, this extra performance is relatively cheap. Video card power consumption moves by only a few watts, and then a few watts of CPU time on top of that. For all practical purposes overclocking can extend NVIDIA’s already incredible performance-per-watt ratio by another 10% with no meaningful impact on noise. Given the consistency of overclocking headroom we’ve seen in our GTX 750 series samples, this is one of those scenarios where overclocking is going to be a reasonable and (relatively) fool proof action to take.

Power, Temperature, & Noise Final Words
Comments Locked

177 Comments

View All Comments

  • MrSpadge - Tuesday, February 18, 2014 - link

    To be fair GTX650Ti Boost consumes ~100 W in the real world. Still a huge improvement!
  • NikosD - Tuesday, February 18, 2014 - link

    Hello.

    I have a few questions regarding HTPC and video decoding.

    Can we say that we a new video processor from Nvidia, a new name like VP6 or more like a VP5.x ?

    How Nvidia is calling the new video decoder ?

    Why don't you add a 4K60 fps clip in order to test soon to be released HDMI 2.0 output ?

    If you run a benchmark using DXVA Checker between VP5 and VP6 (?) how much faster is VP6 in H.264 1080p, 4K clips ?

    Thanks!
  • Ryan Smith - Thursday, February 20, 2014 - link

    NVIDIA doesn't have a name for it; at least not one they're sharing with us.
  • NikosD - Thursday, February 20, 2014 - link

    Thanks.
    Is it possible to try a 4K60fps with Maxwell ?

    I wonder if it can decode it in realtime...
  • Flunk - Tuesday, February 18, 2014 - link

    I think these will be a lot more exciting in laptops. Even if they're no where near Nvidia's claimed 2x Kepler efficiency per watt. On the desktop it's not really that big a deal. The top-end chip will probably be ~40% faster than the 780TI but that will be a while.
  • dylan522p - Tuesday, February 18, 2014 - link

    the 880 will be much more powerful than the 780ti. More than 40% even. They could literally die shrink and throw a few more SMX's and the 40% would be achieved. I would imagine either they are gonna have a HUGE jump (80% +) or they are gonna do what they did with Kepler and release a 200W Sku that is about 50% faster and when 20nm yields are good enough have the 900 series come with 250W Skus.
  • Kevin G - Tuesday, February 18, 2014 - link

    Very impressive performance for its power consumption. I can see an underclocked version of this card coming with a passive cooler for HTPC solutions. Perhaps that'd be a hypothetical GT740? I'm surprised that nVidia hasn't launched a mobile version of this chip. It seems like it'd be ideal for midrange laptops that still have discrete graphics.

    I suspect that the extra overclocking headroom is in reserve for a potential rebrand to a GTX 800 series product. (Though a straight die shrink of this design to 20 nm would provide even more headroom for a GTX 800/900 card.) nVidia could have held back to keep it below the more expensive GTX 660.

    Though ultimately I'm left wanting the bigger GM100 and GM104 chips. We're going to have to wait until 20 nm is ready but considering the jump Maxwell has provided in the low end of the market, I'm eager to see what it can do in the high end.
  • DanNeely - Tuesday, February 18, 2014 - link

    ASUS has a 65W TDP GT 640 with a big 2 slot passive heat sink (GT640-DCSL-2GD3); with the 750 Ti only hitting 60W a passive version of it should be possible at near stock performance. I suspect the 740 will be a farther cut down 3 SMM model which might allow a single slot passive design.
  • PhoenixEnigma - Tuesday, February 18, 2014 - link

    Passive cooling was my first thought as well - I've been looking for something to replace the 6770 in my HTPC with, and I wanted something both faster and passively cooled. There are already passive 7750s on the market, and the numbers in Bench put the 750Ti at about 9W more than then 7750 under real world load, so a vanilla 750 with a passive cooler should be entirely possible. Even a 750Ti might be doable, but that could be pushing things a little far.
  • evilspoons - Tuesday, February 18, 2014 - link

    I need a new half-height HTPC card, my 2.5 year old Asus Radeon 6570 bit the dust last month (sparkly picture, one particular shade of grey turned random colours). If they can work out the kinks in this thing and underclock it a bit, it sounds like a good candidate.

    It feels like it's been a long time since anything new showed up in the half-height video card game.

Log in

Don't have an account? Sign up now