Final Words

The first time Intel told me it would be using a 3rd party controller in one of its upcoming SSDs I bit my tongue. Intel tried to justify the decision but all I heard in my head was that Intel was bowing out of the high end race, that Elmcrest was a copout. I have to admit I was wrong. I assumed that Elmcrest wouldn't be even remotely competitive. In reality, the Intel SSD 510 may not be the fastest SATA SSD we've ever tested, but it comes very close. Overall performance is within striking distance of the Vertex 3 and depending on the test, performance can actually be a little higher than the clever competitor. Note that I've only tested the 250GB drive. Intel's 120GB SSD 510 should be measurably slower.

The 510 is most interesting over a 6Gbps interface. Connected to a 3Gbps interface the drive is quick, but fails to distance itself from the high end drives of last year. This is the same conclusion I came to when I previewed the Vertex 3. These next-generation SSDs not only use 6Gbps SATA, they really need it.

My biggest complaints about the 510 actually aren't about Intel's use of a 3rd party controller, instead they are about the drive's lackluster random read performance. In a horrible bout of irony Intel fixed its sequential performance and moved backwards in the random department. Random read performance, as it turns out, has a pretty major impact in the real world.

Random write performance is also pretty low by today's standards, however the impact on most of our real world performance tests is minimal. It looks like we may have hit the upper limit of what we need from 4KB random write performance (at least given current workloads).

Sequential performance is easily competitive with the Vertex 3, and when presented with incompressible data the Intel SSD 510 is easily faster.

Overall OCZ's Vertex 3 is faster, however the margin of victory isn't always significant. Intel would argue that its drive is better tested and less likely to fail. Whether this is true remains to be seen, but history does count for something.

As always, it'll be months before we have a good idea of compatibility, reliability and any long term issues. In typical AnandTech fashion I've already deployed the Intel SSD 510 in a primary use system. The big advantage Intel has today is that its drive is currently available and it seems to work. The performance is good and close enough to the Vertex 3 that if the drive does end up being more reliable Intel could have a winner on its hands.

At the same time, OCZ has been investing tremendously in improving manufacturing quality and validation testing. If the Vertex 3 can launch without any major firmware bugs, reliability or manufacturing issues, Intel's SSD 510 may not have a leg to stand on.

Then we have the other Marvell based designs from Corsair and Crucial/Micron. The 2011 SSD market is just starting to heat up...

TRIM Performance
Comments Locked

128 Comments

View All Comments

  • masterkritiker - Wednesday, March 2, 2011 - link

    When will we be able to buy $100+ SSDs @ 1TB capacity?
  • gammaray - Wednesday, March 2, 2011 - link

    never
  • tno - Thursday, March 3, 2011 - link

    +1
  • Nihility - Thursday, March 3, 2011 - link

    At least 4 years.
  • ionis - Wednesday, March 2, 2011 - link

    It would be nice if some HDDs were also included in workload benches. They were in the random read/write benches so I don't get why they were left out of the other ones.
  • dagamer34 - Wednesday, March 2, 2011 - link

    HDDs aren't included because they'd throw off the scale pretty horribly. The number labeling the performance would be larger than the bar itself compared to all the other SSDs out there.
  • ionis - Thursday, March 3, 2011 - link

    I find that hard to believe, considering they were included in the random read/write graphs at 1/100 or less of the performance of some of the SSDs and the charts weren't scaled horribly.

    In the sequential reads/writes, they performed at 25%-80% which doesn't through the scale off much at all.

    The heavy workload looked to involve a lot of sequential access (installs and downloads). So again, I don't see why they weren't included.

    There are also other comments asking for more HDDs in the benches. For people like myself, who didn't start following storage benchmarks until SSDs came out, it's hard to tell what the performance gain is.
  • ionis - Thursday, March 3, 2011 - link

    I find that hard to believe, considering they were included in the random read/write graphs at 1/100 or less of the performance of some of the SSDs and the charts weren't scaled horribly.

    In the sequential reads/writes, they performed at 25%-80% which doesn't throw the scale off much at all.

    The heavy workload looked to involve a lot of sequential access (installs and downloads). So again, I don't see why they weren't included.

    There are also other comments asking for more HDDs in the benches. For people like myself, who didn't start following storage benchmarks until SSDs came out, it's hard to tell what the performance gain is.

    (sorry if double post, comment didn't seem to show up 1st time)
  • mateus1987 - Wednesday, March 2, 2011 - link

    now you know.
    http://nzealander.blog.com/files/2011/03/6661.jpg
  • mateus1987 - Wednesday, March 2, 2011 - link

    the satanic Apple logo.

    http://nzealander.blog.com/files/2011/03/6661.jpg

Log in

Don't have an account? Sign up now