The Lineup

I don’t include a lot of super markety slides in these launch reviews, but this one is worthy of a mention:

Sandy Bridge is launching with no less than 29 different SKUs today. That’s 15 for mobile and 14 for desktop. Jarred posted his full review of the mobile Core i7-2820QM, so check that out if you want the mobile perspective on all of this.

By comparison, this time last year Intel announced 11 mobile Arrandale CPUs and 7 desktop parts. A year prior we got Lynnfield with 3 SKUs and Clarksfield with 3 as well. That Sandy Bridge is Intel’s biggest launch ever goes without saying. It’s also the most confusing. While Core i7 exclusively refers to processors with 4 or more cores (on the desktop at least), Core i5 can mean either 2 or 4 cores. Core i3 is reserved exclusively for dual-core parts.

Intel promised that the marketing would all make sense one day. Here we are, two and a half years later, and the Core i-branding is no clearer. At the risk of upsetting all of Intel Global Marketing, perhaps we should return to just labeling these things with their clock speeds and core counts? After all, it’s what Apple does—and that’s a company that still refuses to put more than one button on its mice. Maybe it’s worth a try.

Check Jarred’s article out for the mobile lineup, but on desktop here’s how it breaks down:

Processor Core Clock Cores / Threads L3 Cache Max Turbo Max Overclock Multiplier TDP Price
Intel Core i7-2600K 3.4GHz 4 / 8 8MB 3.8GHz 57x 95W $317
Intel Core i7-2600 3.4GHz 4 / 8 8MB 3.8GHz 42x 95W $294
Intel Core i5-2500K 3.3GHz 4 / 4 6MB 3.7GHz 57x 95W $216
Intel Core i5-2500 3.3GHz 4 / 4 6MB 3.7GHz 41x 95W $205
Intel Core i5-2400 3.1GHz 4 / 4 6MB 3.4GHz 38x 95W $184
Intel Core i5-2300 2.8GHz 4 / 4 6MB 3.1GHz 34x 95W $177
Intel Core i3-2120 3.3GHz 2 / 4 3MB N/A N/A 65W $138
Intel Core i3-2100 2.93GHz 2 / 4 3MB N/A N/A 65W $117

Intel is referring to these chips as the 2nd generation Core processor family, despite three generations of processors carrying the Core architecture name before it (Conroe, Nehalem, and Westmere). The second generation is encapsulated in the model numbers for these chips. While all previous generation Core processors have three digit model numbers, Sandy Bridge CPUs have four digit models. The first digit in all cases is a 2, indicating that these are “2nd generation” chips and the remaining three are business as usual. I’d expect that Ivy Bridge will swap out the 2 for a 3 next year.

What you will see more of this time around are letter suffixes following the four digit model number. K means what it did last time: a fully multiplier unlocked part (similar to AMD’s Black Edition). The K-series SKUs are even more important this time around as some Sandy Bridge CPUs will ship fully locked, as in they cannot be overclocked at all (more on this later).

Processor Core Clock Cores / Threads L3 Cache Max Turbo TDP
Intel Core i7-2600S 2.8GHz 4 / 8 8MB 3.8GHz 65W
Intel Core i5-2500S 2.7GHz 4 / 4 6MB 3.7GHz 65W
Intel Core i5-2500T 2.3GHz 4 / 4 6MB 3.3GHz 45W
Intel Core i5-2400S 2.5GHz 4 / 4 6MB 3.3GHz 65W
Intel Core i5-2390T 2.7GHz 2 / 4 3MB 3.5GHz 35W
Intel Core i5-2100T 2.5GHz 2 / 4 3MB N/A 35W

There are also T and S series parts for desktop. These are mostly aimed at OEMs building small form factor or power optimized boxes. The S stands for “performance optimized lifestyle” and the T for “power optimized lifestyle”. In actual terms the Ses are lower clocked 65W parts while the Ts are lower clocked 35W or 45W parts. Intel hasn’t disclosed pricing on either of these lines but expect them to carry noticeable premiums over the standard chips. There’s nothing new about this approach; both AMD and Intel have done it for a little while now, it’s just more prevalent in Sandy Bridge than before.

More Differentiation

In the old days Intel would segment chips based on clock speed and cache size. Then Intel added core count and Hyper Threading to the list. Then hardware accelerated virtualization. With Sandy Bridge the matrix grows even bigger thanks to the on-die GPU.

Processor Intel HD Graphics Graphics Max Turbo Quick Sync VT-x VT-d TXT AES-NI
Intel Core i7-2600K 3000 1350MHz Y Y N N Y
Intel Core i7-2600 2000 1350MHz Y Y Y Y Y
Intel Core i5-2500K 3000 1100MHz Y Y N N Y
Intel Core i5-2500 2000 1100MHz Y Y Y Y Y
Intel Core i5-2400 2000 1100MHz Y Y Y Y Y
Intel Core i5-2300 2000 1100MHz Y Y N N Y
Intel Core i3-2120 2000 1100MHz Y N N N N
Intel Core i3-2100 2000 1100MHz Y N N N Y

While almost all SNB parts support VT-x (the poor i3s are left out), only three support VT-d. Intel also uses AES-NI as a reason to force users away from the i3 and towards the i5. I’ll get into the difference in GPUs in a moment.

Introduction Overclocking: Effortless 4.4GHz+ on Air
Comments Locked

283 Comments

View All Comments

  • Taft12 - Tuesday, January 4, 2011 - link

    You first.
  • ReaM - Tuesday, January 4, 2011 - link

    the six core 980x still owns them in all tests where all cores are used.

    I dont know 22k in cinebench is really not a reason to buy the new i7, I reach 24k on air with i7 860 and my i5 runs on 20k on air.

    Short term performance is real good, but I dont care if I wait for a package to unpack for 7 seconds or 8, for long term like rendering, neither there is a reason to upgrade.

    I recommend you get the older 1156 off ebay and save a ton of money.

    I have the i5 on hackintosh, I am wondering if 1155 will be hackintoshable
  • Spivonious - Tuesday, January 4, 2011 - link

    I have to disagree with Anand; I feel the QuickSync image is the best of the four in all cases. Yes, there is some edge-softening going on, so you lose some of the finer detail that ATi and SNB gives you, but when viewing on a small screen such as one on an iPhone/iPod, I'd rather have the smoothed-out shapes than pixel-perfect detail.
  • wutsurstyle - Tuesday, January 4, 2011 - link

    I started my computing days with Intel but I'm so put off by the way Intel is marketing their new toys. Get this but you can't have that...buy that, but your purchase must include other things. And even after I throw my wallet to Intel, I still would not have a OC'd Sandy Bridge with useful IGP and Quicksync. But wait, throw more money on a Z68 a little later. Oh...and there's a shiny new LGA2011 in the works. Anyone worried that they started naming sockets after the year it comes out? Yay for spending!

    AMD..please save us!
  • MrCrispy - Tuesday, January 4, 2011 - link

    Why the bloody hell don't the K parts support VT-d ?! I can only imagine it will be introduced at a price premium in a later part.
  • slick121 - Tuesday, January 4, 2011 - link

    Wow I just realized this. I really hate this type of market segmentation.
  • Navier - Tuesday, January 4, 2011 - link

    I'm a little confused why Quick Sync needs to have a monitor connected to the MB to work. I'm trying to understand why having a monitor connected is so important for video transcoding, vs. playback etc.

    Is this a software limitation? Either in the UEFI (BIOS) or drivers? Or something more systemic in the hardware.

    What happens on a P67 motherboard? Does the P67 board disable the on die GPU? Effectively disabling Quick Sync support? This seems a very unfortunate over-site for such a promising feature. Will a future driver/firmware update resolve this limitation?

    Thanks
  • NUSNA_moebius - Tuesday, January 4, 2011 - link

    Intel HD 3000 - ~115 Million transistors
    AMD Radeon HD 3450 - 181 Million transistors - 8 SIMDs
    AMD Radeon HD 4550 - 242 Million transistors - 16 SIMDs
    AMD Radeon HD 5450 - 292 Million transistors - 16 SIMDs
    AMD Xenos (Xbox 360 GPU) - 232 Million transistors + 105 Million (eDRAM daughter die) = 337 Million transistors - 48 SIMDs

    Xenos I think in the end is still a good two, two and a half times more powerful than the Radeon 5450. Xenos does not have to be OpenCL, Direct Compute, DX11 nor fully DX10 compliant (a 50 million jump from the 4550 going from DX10.1 to 11), nor contains hardware video decode, integrated HDMI output with 5.1 audio controller (even the old Radeon 3200 clocks in at 150 million + transistors). What I would like some clarification on is if the transistor count for the Xenos includes Northbridge functions..............

    Clearly PC GPUs have insane transistor counts in order to be highly compatible. It is commendable how well the Intel HD 3000 does with only 115 Million, but it's important to note that older products like the X1900 had 384 Million transistors, back when DX9.0c was the aim and in pure throughput, it should match or closely trail Xenos at 500 MHz. Going from the 3450 to 4550 GPUs, we go up another 60 million for 8 more SIMDs of a similar DX10.1 compatible nature, as well as the probable increases for hardware video decode, etc. So basically, to come into similar order as the Xenos in terms of SIMD counts (of which Xenos is 48 of it's own type I must emphasize), we would need 60 million transistors per 8 SIMDs, which would put us at about 360 million transistors for a 48 SIMD (240 SP) AMD part that is DX 10.1 compatible and not equipped with anything unrelated to graphics processing.

    Yes, it's a most basic comparison (and probably fundamentally wrong in some regards), but I think it sheds some light on the idea that the Radeon HD 5450 really still pales in comparison to the Xenos. We have much better GPUs like Redwood that are twice as powerful with their higher clock speeds + 400 SPs (627 Million transistors total) and consume less energy than Xenos ever did. Of course, this isn't taking memory bandwidth or framebuffer size into account, nor the added benefits of console optimization.
  • frankanderson - Tuesday, January 4, 2011 - link

    I'm still rocking my Q6600 + Gigabyte X38 DS5 board, upgraded to a GTX580 and been waiting for Sandy, definitely looking forward to this once the dust settles..

    Thanks Anand...
  • Spivonious - Wednesday, January 5, 2011 - link

    I'm still on E6600 + P965 board. Honestly, I would upgrade my video card (HD3850) before doing a complete system upgrade, even with Sandy Bridge being so much faster than my old Conroe. I have yet to run a game that wasn't playable at full detail. Maybe my standards are just lower than others.

Log in

Don't have an account? Sign up now