Z68

In developing its 6-series chipsets Intel wanted to minimize as much risk as possible, so much of the underlying chipset architecture is borrowed from Lynnfield’s 5-series platform. The conservative chipset development for Sandy Bridge left a hole in the lineup. The P67 chipset lets you overclock CPU and memory but it lacks the flexible display interface necessary to support SNB’s HD Graphics. The H67 chipset has an FDI so you can use the on-die GPU, however it doesn’t support CPU or memory overclocking. What about those users who don’t need a discrete GPU but still want to overclock their CPUs? With the chipsets that Intel is launching today, you’re effectively forced to buy a discrete GPU if you want to overclock your CPU. This is great for AMD/NVIDIA, but not so great for consumers who don’t need a discrete GPU and not the most sensible decision on Intel’s part.

There is a third member of the 6-series family that will begin shipping in Q2: Z68. Take P67, add processor graphics support and you’ve got Z68. It’s as simple as that. Z68 is also slated to support something called SSD Caching, which Intel hasn’t said anything to us about yet. With version 10.5 of Intel’s Rapid Storage Technology drivers, Z68 will support SSD caching. This sounds like the holy grail of SSD/HDD setups, where you have a single drive letter and the driver manages what goes on your SSD vs. HDD. Whether SSD Caching is indeed a DIY hybrid hard drive technology remains to be seen. It’s also unclear whether or not P67/H67 will get SSD Caching once 10.5 ships.

LGA-2011 Coming in Q4

One side effect of Intel’s tick-tock cadence is a staggered release update schedule for various market segments. For example, Nehalem’s release in Q4 2008 took care of the high-end desktop market, however it didn’t see an update until the beginning of 2010 with Gulftown. Similarly, while Lynnfield debuted in Q3 2009 it was left out of the 32nm refresh in early 2010. Sandy Bridge is essentially that 32nm update to Lynnfield.

So where does that leave Nehalem and Gulftown owners? For the most part, the X58 platform is a dead end. While there are some niche benefits (more PCIe lanes, more memory bandwidth, 6-core support), the majority of users would be better served by Sandy Bridge on LGA-1155.

For the users who need those benefits however, there is a version of Sandy Bridge for you. It’s codenamed Sandy Bridge-E and it’ll debut in Q4 2011. The chips will be available in both 4 and 6 core versions with a large L3 cache (Intel isn’t being specific at this point).

SNB-E will get the ring bus, on-die PCIe and all of the other features of the LGA-1155 Sandy Bridge processors, but it won’t have an integrated GPU. While current SNB parts top out at 95W TDP, SNB-E will run all the way up to 130W—similar to existing LGA-1366 parts.

The new high-end platform will require a new socket and motherboard (LGA-2011). Expect CPU prices to start off at around the $294 level of the new i7-2600 and run all the way up to $999.

UEFI Support: 3TB Drives & Mouse Support Pre-Boot A Near-Perfect HTPC
Comments Locked

283 Comments

View All Comments

  • dgingeri - Monday, January 3, 2011 - link

    I have a really good reason for X58: I/O

    I have 2X GTX 470 video cards and a 3Ware PCIe X4 RAID controller. None of the P67 motherboards I've seen would handle all that hardware, even with cutting the video cards' I/O in half.

    This chip fails in that one very important spot. if they had put a decent PCIe controller in it, with 36 PCIe lanes instead of 16, then I'd be much happier.
  • Exodite - Monday, January 3, 2011 - link

    That's exactly why this is the mainstream platform, while x58 is the enthusiast one, though. Your requirements aren't exactly mainstream, indeed they are beyond what most enthusiasts need even.
  • sviola - Monday, January 3, 2011 - link

    You may want to look at the Gigabyte GA-P67A-UD5 and GA-P67A-UD7 as they can run your configuration.
  • Nihility - Monday, January 3, 2011 - link

    Considering the K versions of the CPUs don't have it.

    If I'm a developer and use VMs a lot, how important will VT-d be within the 3-4 years that I would own such a chip?

    I know that it basically allows direct access to hardware and I don't want to get stuck without it, if it becomes hugely important (Like how you need VT-x to run 64 bit guests).

    Any thoughts?
  • code65536 - Monday, January 3, 2011 - link

    My question is whether or not that chart is even right. I'm having a hard time believing that Intel would disable a feature in an "enthusiast" chip. Disabling features in lower-end cheaper chips, sure, but in "enthusiast" chips?! Unless they are afraid of those K series (but not the non-K, apparently?) cannibalizing their Xeon sales?
  • has407 - Monday, January 3, 2011 - link

    Relatively unimportant IMHO if you're doing development. If you're running a VM/IO-intensive production workload (which isn't likely with one of these), then more important.

    Remember, you need several things for Vt-d to work:
    1. CPU support (aka "IOMMU").
    2. Chip-set/PCH support (e.g., Q57 has it, P57 does not).
    3. BIOS support (a number of vendor implementations are broken).
    4. Hypervisor support.

    Any of 1-3 might result in "No" for the K parts. Even though it *should* apply only to the CPU's capabilities, Intel may simply be saying it is not supported. (Hard to tell as the detailed info isn't up on Intel's ark site yet, and it would otherwise require examining the CPU capability registers to determine.)

    However, it's likely to be an intentional omission on Intel's part as, e.g., the i7-875K doesn't support Vt-d either. As to why that might be there are several possible reasons, many justifiable IMHO. Specifically, the K parts are targeted at people who are likely to OC, and OC'ing--even a wee bit, especially when using VT-d--may result in instability such as to make the system unusable.

    If Vt-d is potentially important to you, then I suggest you back up through steps 4-1 above; all other things equal, 4-2 are likely to be far more important. If you're running VM/IO-intensive workloads where performance and VT-d capability is a priority, then IMHO whether you can OC the part will be 0 or -1 on the list of priorities.

    And while VT-d can make direct access to hardware a more effective option (again, assuming Hypervisor support), it's primary purpose is to make all IO more efficient in a virtualized environment (e.g., IOMMU and interrupt mapping). It's less a matter of "Do I have to have it to get to first base?" than "How much inefficiency am I willing to tolerate?" And again, unless you're running IO-intensive VM workloads in a production environment, the answer is probably "The difference is unlikely to be noticeable for the work [development] I do."

    p.s. code65536 -- I doubt Intel is concerned with OC'd SB parts cannibalizing Xeon sales. (I'd guess the count of potentially lost Xeon sales could be counted on two hands with fingers to spare.:) Stability is far more important than pure speed for anyone I know running VM-intensive loads and, e.g., no ECC support on these parts is for me deal killer. YMMV.
  • DanNeely - Tuesday, January 4, 2011 - link

    For as long as MS dev tools take to install, I'd really like to be able to do all my dev work in a VM backed up to the corporate lan to ease the pain of a new laptop and to make a loaner actually useful. Unfortunately the combination of lousy performance with MS VPC, and the inability of VPC to run two virtual monitors of different sizes mean I don't have a choice about running visual studio in my main OS install.
  • mino - Wednesday, January 5, 2011 - link

    VMware Workstation is what you need. VPC is for sadists.

    Even if your budget is 0(zero), and VPC is free, KVM/QEMU might be a better idea.

    Also, Hyper-V locally and (via RDP) is pretty reasonable.
  • cactusdog - Monday, January 3, 2011 - link

    If we cant overclock the chipset how do we get high memory speeds of 2000Mhz+? Is there still a QPI/Dram voltage setting?

  • Tanel - Monday, January 3, 2011 - link

    No VT-d on K-series? FFFFUUUU!

    So just because I want to use VT-d I'll also be limited to 6 EUs and have no possibility to overclock?

    Then there's the chipset-issue. Even if I got the enthusiast targeted K-series I would still need to get the:
    a) ...H67-chipset to be able to use the HD-unit and QS-capability - yet not be able to overclock.
    b) ...P67-chipset to be able to overclock - yet to lose QS-capability and the point of having 6 extra EUs as the HD-unit can't be used at all.

    What the hell Intel, what the hell! This makes me furious.

Log in

Don't have an account? Sign up now