Final Words

If Intel's roadmap and pricing hold true, then the Core i5 2400 should give you an average of 23% better performance than the Core i5 760 at a potentially lower point. If we compare shipping configurations, the Core i5 2400 should actually perform like a Core i7 880 despite not having Hyper Threading enabled. Clock for clock however, Sandy Bridge seems to offer a 10% increase in performance. Keep in mind that this analysis was done without a functional turbo mode, so the shipping Sandy Bridge CPUs should be even quicker. I'd estimate you can add another 3 - 7% to these numbers for the final chips. That's not bad at all for what amounts to a free upgrade compared to what you'd buy today. Power consumption will also see an improvement. Not only will Sandy Bridge be noticeably quicker than Lynnfield, it'll draw less power.

While Nehalem was an easy sell if you had highly threaded workloads, Sandy Bridge looks to improve performance across the board regardless of thread count. It's a key differentiator that should make Sandy Bridge an attractive upgrade to more people.

The overclocking prevention Intel is putting into Sandy Bridge sounds pretty bad at first. However if the roadmap and pricing stay their course, it looks like overclockers looking to spend as much as they did on Core i5 750/760s won't be limited at all thanks to the K SKUs in the mix. The real question is what happens at the low end. While I don't get the impression that the Core i3 2000 series will be completely locked, it's unclear how much rope Intel will give us.

Sandy Bridge's integrated graphics is good. It's fast enough to put all previous attempts at integrated graphics to shame and compete with entry level discrete GPUs. The fact that you can get Radeon HD 5450 performance for free with a Core i5 2400 is just awesome. As I mentioned before, you won't want to throw away your GTX 460, but if you were planning on spending $50 on a GPU - you may not need to with Sandy Bridge.

Assuming mobile Sandy Bridge performs at least as well as the desktop parts, we may finally be at the point where what you get with a mainstream notebook is good enough to actually play some games. I'm really curious to see how well the higher spec integrated graphics parts do once Sandy Bridge makes it a little closer to final (Update: it looks like we may have had a 12 EU part from the start). I should add that despite the GPU performance improvement - don't believe this is enough. I would like to see another doubling in integrated GPU performance before I'm really happy, but now it's very clear that Intel is taking integrated graphics seriously.

Architecturally, I'm very curious to see what Intel has done with Sandy Bridge. Given the improvements in FP performance and what I've heard about general purpose performance, I'm thinking there's a lot more than we've seen here today. Then there are the features that we were unable to test: Sandy Bridge's improved turbo and its alleged on-die video transcode engine. If the latter is as capable as I've heard, you may be able to have better transcoding performance on your notebook than you do on your desktop today. Update: Check out our Sandy Bridge Architecture article for full details on the CPU's architecture.

With Sandy Bridge next year you'll get higher clock speeds, more performance per clock and reasonable integrated graphics at presumably the same prices we're paying today. What's even more exciting is the fact that what we're looking at is just mainstream performance. The high end Sandy Bridge parts don't arrive until the second half of 2011 which add more cores and more memory bandwidth.

Power Consumption
Comments Locked

200 Comments

View All Comments

  • iwodo - Sunday, August 29, 2010 - link

    The GPU is on the same die, So depending on what you mean by true "Fusion" product. It is by AMD's definition ( the creator of the tech terms "Fusion" ) a fusion product.
  • iwodo - Sunday, August 29, 2010 - link

    You get 10% of IPC on average. It varies widely from 5 % to ~30% clock per clock.

    None of these Test have had AVX coded. I am not sure if you need to recompile to take advantage of the additional width for faster SSE Code. ( I am thinking such changes in coding of instruction should require one. ) AVX should offer some more improvement in many areas.

    So much performance is here with even less Peak Power usage. If you factor in the Turbo Mode, Sandy Bridge actually give you a huge boost in Performance / Watts!!!

    So i dont understand why people are complaining.
  • yuhong - Sunday, August 29, 2010 - link

    Yes AVX requires software changes, as well as OS support for using XSAVE to save AVX state.
  • BD2003 - Sunday, August 29, 2010 - link

    It sounds like intel has a home run here. At least for my needs. Right now I'm running entirely on core 2 chips, but I can definitely find a use for all these.

    For my main/gaming desktop, the quad core i5s seem like theyll be the first upgrade thats big enough to move me away from my e6300 from 4 years ago.

    For my HTPC, the integrated graphics seem like theyre getting to a point where I can move past my e2180 + 9400 IGP. I need at least some 3d graphics, and the current i3/i5 don't cut it. Even lower power consumption + faster CPU, all in a presumably smaller package - win.

    For my home server, I'd love to put the lowest end i3 in there for great idle power consumption but with the speed to make things happen when it needs to. I'd been contemplating throwing in a quad core, but if the on-die video transcoding engine is legitimate there will be no need for that.

    Thats still my main unanswered question: what's the deal with the video encoder/transcoder? Does it require explicit software support, or is it compatible with anything that's already out there? I'm mainly interested in real time streaming over LAN/internet to devices such as an ipad or even a laptop - if it can put out good quality 720-1080p h264 at decent bitrates in real time, especially on a low end chip, I'll be absolutely blown away. Any more info on this?
  • _Q_ - Sunday, August 29, 2010 - link

    I do understand some complains, but Intel is running a business and so they do what is in their best interest.

    Yet, concerning USB 3 it seems to be too much of a disservice to the costumers that it should be in, without any third party add-on chip!

    I think it is shameful of them to delay this further just so that they can get their LightPeak thing into to the market. Of which I read nothing in this review so I wonder, when will even that one come?!

    I can only hope AMD does support it (haven't read about it) and they start getting more market, maybe that will show these near sighted Intel guys.
  • tatertot - Sunday, August 29, 2010 - link

    Lightpeak would be chipset functionality, at least at first.

    Also, lightpeak is not a protocol, it's protocol-agnostic, and can in fact carry USB 3.0.

    But, rant away if you want...
  • Guimar - Sunday, August 29, 2010 - link

    Really need one
  • Triple Omega - Sunday, August 29, 2010 - link

    I'm really interested to see how Intel is going to price the higher of these new CPU's, as there are several hurdles:

    1) The non-K's are going up against highly overclockable 1366 and 1156 parts. So pricing the K-models too high could mean trouble.

    2) The LGA-1356 platform housing the new consumer high-end(LGA-2011 will be server-only) will also arrive later in 2011. Since these are expected to have up to 8 cores, pricing the higher 1155 CPU's too high will force a massive price-drop when 1356 arrives.(Or the P67 platform will collapse.) And 1366 has shown that such a high-end platform needs the equivalent of an i7 920 to be successful. So pricing the 2600K @ $500 seems impossible. Even $300 would not leave room for a $300 1356 part as that will, with 6-8 cores, easily outperform the 2600K.

    It will also be quite interesting to see the development of those limits on overclocking when 1356 comes out. As imposing limits there too, could make the entire platform fail.(OCed 2600K better then 6-core 1356 CPU for example.) And of course AMD's response to all this. Will they profit from the overclocking limits of Intel? Will they grab back some high-end? Will they force Intel to change their pricing on 1155/1356?

    @Anand:

    It would be nice to see another PCIe 2.0 x8 SLI/CF bottleneck test with the new HD 6xxx series when the time comes. I'm interested to see if the GPU's will catch up with Intels limited platform choice.
  • thewhat - Sunday, August 29, 2010 - link

    I'm disappointed that you didn't test it against 1366 quads. The triple channel memory and a more powerful platform in general have a significant advantage over 1156, so a lot of us are looking at those CPUs. Especially since the i7 950 is about to have its price reduced.

    A $1000 six-core 980X doesn't really fit in there, since it's at a totally different price point.

    I was all for the 1366 as my next upgrade, but the low power consumption of Sandy Bridge looks very promising in terms of silent computing (less heat).
  • SteelCity1981 - Sunday, August 29, 2010 - link

    What do you think the Core i7 980x uses? An LGA 1366 socket with triple channel memory support. So what makes you think that the Core i7 950 is going to perform any diff?????

Log in

Don't have an account? Sign up now