Power Consumption

Adding cores and increasing the frequency is going to have an effect on power consumption. Even though Skylake-X is built on a very competitive 14nm process, physics are physics and the best way to mitigate that is through innovative design. Ultimately here we would normally be expecting a similar result to Skylake-S, but with the new cache, mesh and AVX512 instructions, their effect on the power consumption might end up increasing power.

Power: Total Package (Full Load)

So this is surprising. Normally Intel are relatively good at their recommended TDP numbers: the ability to remove a certain amount of heat related to power consumption is something Intel either gets bang on, or has plenty of headroom. The sole Kaby Lake-X CPU that completed this test is an example: at under 60W, it is comfortably under the 112W TDP that chip has. But for the 140W Skylake-X parts, we recorded nearly 150W power consumption. Intel announced that the socket is suitable up to 165W, so it’s clear that they are pushing the frequencies here and it is going to be telling what might happen with the higher core count silicon.

Test Bed and Setup

As per our processor testing policy, we take a premium category motherboard suitable for the socket, and equip the system with a suitable amount of memory running at the manufacturer's maximum supported frequency. This is also typically run at JEDEC subtimings where possible. It is noted that some users are not keen on this policy, stating that sometimes the maximum supported frequency is quite low, or faster memory is available at a similar price, or that the JEDEC speeds can be prohibitive for performance. While these comments make sense, ultimately very few users apply memory profiles (either XMP or other) as they require interaction with the BIOS, and most users will fall back on JEDEC supported speeds - this includes home users as well as industry who might want to shave off a cent or two from the cost or stay within the margins set by the manufacturer. Where possible, we will extend out testing to include faster memory modules either at the same time as the review or a later date.

Test Setup
Processor Intel Core i9-7900X (10C/20T, 140W, 3.3 GHz)
Intel Core i7-7820X (8C/20T, 140W, 3.6 GHz)
Intel Core i7-7800X (6C/12T, 140W, 3.5 GHz)
Intel Core i7-7740X (4C/8T, 112W, 4.3 GHz)
Intel Core i5-7640X (4C/4T, 112W, 4.0 GHz)
Motherboards ASRock X299 Taichi
MSI X299 Gaming Pro Carbon
GIGABYTE X299 Gaming 9
Cooling Thermalright TRUE Copper
Silverstone AR10-115XS
Power Supply Corsair AX760i PSU
Corsair AX1200i Platinum PSU
Memory Corsair Vengeance Pro DDR4-2666 4x8 GB or
G.Skill Ripjaws 4 DDR4-2666 C15 4x8GB or
TeamGroup NightHawk RGB DDR4-3000
Video Cards MSI GTX 1080 Gaming 8GB
ASUS GTX 1060 Strix
Sapphire R9 Fury 4GB
Sapphire RX 480 8GB
Sapphire RX 460 2GB
Hard Drive Crucial MX200 1TB
Optical Drive LG GH22NS50
Case Open Test Bed
Operating System Windows 10 Pro 64-bit

Many thanks to...

We must thank the following companies for kindly providing hardware for our multiple test beds. Some of this hardware is not in this test bed specifically, but is used in other testing.

Thank you to Sapphire for providing us with several of their AMD GPUs. We met with Sapphire back at Computex 2016 and discussed a platform for our future testing on AMD GPUs with their hardware for several upcoming projects. As a result, they were able to sample us the latest silicon that AMD has to offer. At the top of the list was a pair of Sapphire Nitro R9 Fury 4GB GPUs, based on the first generation of HBM technology and AMD’s Fiji platform. As the first consumer GPU to use HDM, the R9 Fury is a key moment in graphics history, and this Nitro cards come with 3584 SPs running at 1050 MHz on the GPU with 4GB of 4096-bit HBM memory at 1000 MHz.

Further Reading: AnandTech’s Sapphire Nitro R9 Fury Review

Following the Fury, Sapphire also supplied a pair of their latest Nitro RX 480 8GB cards to represent AMD’s current performance silicon on 14nm (as of March 2017). The move to 14nm yielded significant power consumption improvements for AMD, which combined with the latest version of GCN helped bring the target of a VR-ready graphics card as close to $200 as possible. The Sapphire Nitro RX 480 8GB OC graphics card is designed to be a premium member of the RX 480 family, having a full set of 8GB of GDDR5 memory at 6 Gbps with 2304 SPs at 1208/1342 MHz engine clocks.

Further Reading: AnandTech’s AMD RX 480 Review

With the R9 Fury and RX 480 assigned to our gaming tests, Sapphire also passed on a pair of RX 460s to be used as our CPU testing cards. The amount of GPU power available can have a direct effect on CPU performance, especially if the CPU has to spend all its time dealing with the GPU display. The RX 460 is a nice card to have here, as it is powerful yet low on power consumption and does not require any additional power connectors. The Sapphire Nitro RX 460 2GB still follows on from the Nitro philosophy, and in this case is designed to provide power at a low price point. Its 896 SPs run at 1090/1216 MHz frequencies, and it is paired with 2GB of GDDR5 at an effective 7000 MHz.

We must also say thank you to MSI for providing us with their GTX 1080 Gaming X 8GB GPUs. Despite the size of AnandTech, securing high-end graphics cards for CPU gaming tests is rather difficult. MSI stepped up to the plate in good fashion and high spirits with a pair of their high-end graphics. The MSI GTX 1080 Gaming X 8GB graphics card is their premium air cooled product, sitting below the water cooled Seahawk but above the Aero and Armor versions. The card is large with twin Torx fans, a custom PCB design, Zero-Frozr technology, enhanced PWM and a big backplate to assist with cooling.  The card uses a GP104-400 silicon die from a 16nm TSMC process, contains 2560 CUDA cores, and can run up to 1847 MHz in OC mode (or 1607-1733 MHz in Silent mode). The memory interface is 8GB of GDDR5X, running at 10010 MHz. For a good amount of time, the GTX 1080 was the card at the king of the hill.

Further Reading: AnandTech’s NVIDIA GTX 1080 Founders Edition Review

Thank you to ASUS for providing us with their GTX 1060 6GB Strix GPU. To complete the high/low cases for both AMD and NVIDIA GPUs, we looked towards the GTX 1060 6GB cards to balance price and performance while giving a hefty crack at >1080p gaming in a single graphics card. ASUS lended a hand here, supplying a Strix variant of the GTX 1060. This card is even longer than our GTX 1080, with three fans and LEDs crammed under the hood. STRIX is now ASUS’ lower cost gaming brand behind ROG, and the Strix 1060 sits at nearly half a 1080, with 1280 CUDA cores but running at 1506 MHz base frequency up to 1746 MHz in OC mode. The 6 GB of GDDR5 runs at a healthy 8008 MHz across a 192-bit memory interface.

Further Reading: AnandTech’s ASUS GTX 1060 6GB STRIX Review

Thank you to Crucial for providing us with MX200 SSDs. Crucial stepped up to the plate as our benchmark list grows larger with newer benchmarks and titles, and the 1TB MX200 units are strong performers. Based on Marvell's 88SS9189 controller and using Micron's 16nm 128Gbit MLC flash, these are 7mm high, 2.5-inch drives rated for 100K random read IOPs and 555/500 MB/s sequential read and write speeds. The 1TB models we are using here support TCG Opal 2.0 and IEEE-1667 (eDrive) encryption and have a 320TB rated endurance with a three-year warranty.

Further Reading: AnandTech's Crucial MX200 (250 GB, 500 GB & 1TB) Review

Thank you to Corsair for providing us with AX760i and AX1200i PSUs. The AX1200i was the first power supply to offer digital control and management via Corsair's Link system, but under the hood it commands a 1200W rating at 50C with 80 PLUS Platinum certification. This allows for a minimum 89-92% efficiency at 115V and 90-94% at 230V. The AX1200i is completely modular, running the larger 200mm design, with a dual ball bearing 140mm fan to assist high-performance use. The AX1200i is designed to be a workhorse, with up to 8 PCIe connectors for suitable four-way GPU setups. The AX1200i also comes with a Zero RPM mode for the fan, which due to the design allows the fan to be switched off when the power supply is under 30% load.

Further Reading: AnandTech's Corsair AX1500i Power Supply Review

 



Thank you to TeamGroup for providing us with Nighthawk RGB Memory.

 

Favored Core, Speed Shift, and Big Motherboard Issues Benchmarking Suite 2017
Comments Locked

264 Comments

View All Comments

  • FreckledTrout - Tuesday, June 20, 2017 - link

    If the 16 core Threadripper ends up being higher perfomant, cheaper, and using less power then it this argument wont matter. Im not sure it will win all three but it could.
  • Lolimaster - Tuesday, June 20, 2017 - link

    <$1000 for 16 core Zen, spent your money there, worth the extra over the 8 core Ryzen.
  • Flunk - Tuesday, June 20, 2017 - link

    No, it isn't. In a professional setting it's better to have more, less expensive systems rendering/serving/anything that just needs more processor time. For an additional $1000, I can double my performance rather than getting 20-30% more.
  • FMinus - Thursday, June 22, 2017 - link

    Frankly I was looking at an upcoming 12 core CPU from either AMD or Intel for my render machine, with the EPYC prices announced, I could see myself going with two AMD Threadrippers 12 cores if they keep them under $800. I got most parts, just need motherboards and the chips, and if they really do keep the price under $800 for 12 core TR, I will get two systems for a bit more as just the 12 core CPU from Intel will cost. Granted since I got most other parts I spent that ahead, but still, two systems easily. And of course the power consumption will be higher, but still.
  • someonesomewherelse - Saturday, October 14, 2017 - link

    What about a single processor 24 core (or even 32 core) epyc? Slightly lower clocks but the 32 core's extra cores should make up for it and it's cheaper than 2 12 core threadrippers especially once you factor in the motherboards/ram/... and ease of use.
  • someonesomewherelse - Saturday, October 14, 2017 - link

    With TR being so cheaper you can have two computers rendering which will be almost twice as fast.
  • barleyguy - Saturday, June 24, 2017 - link

    The 1600x has a 4.1 GHz XFR frequency, which requires good cooling but seems to kick in more than other Ryzen processors, likely because of two less cores. So on lightly threaded tasks without manual overclocking, the 1600x is a great choice.

    Manual overclocking changes the picture a bit though. In that case the 1600 and 1700 move up in bang for the buck, as does the i7 7700k.
  • chrysrobyn - Monday, June 19, 2017 - link

    Zen isn't winning anything here, but they're showing up to the party. It's hard to ignore their prices, which are always lower than the Intel chips in the neighborhood (summed up in the conclusion with "Play it cheaper but competitive"), and their power -- 1/3rd less power than the Intel chips nearby -- which I didn't even see addressed?
  • Ian Cutress - Monday, June 19, 2017 - link

    I made the graph, forgot to write about it. Doing so now...

    (I always end up writing through the launch time :D)
  • Ian Cutress - Monday, June 19, 2017 - link

    OK sorry, done. I'm currently in another briefing for something else...

Log in

Don't have an account? Sign up now