Testing Notes

For the EPYC launch, AMD sent us their best SKU: the EPYC 7601. Meanwhile Intel gave us a choice between the top bin Xeon 8180 and the Xeon 8176. Considering that the latter had 165-173W TDP, similar to AMD's best EPYC, we felt that the Xeon 8176 was the best choice. 

Unfortunately, our time testing the two platforms has been limited. In particular, we only received AMD's EPYC system last week, and the company did not put an embargo on the results. This means that we can release the data now, in time to compare it to the new Skylake-SP Xeons, however it also means that we've only had a handful of days to work with the platform before writing all of this up for today's embargo. We're confident in the data, but it means that we haven't had a chance to tease out the nuances of EPYC quite yet, and that will have to be something we get to in a future article.

Meanwhile we should note that we've had to retire the bulk of our historical benchmark data, as we upgraded both our compiler and OS (see below). Due to this, we only had a very limited amount of time to run additional systems, and for that reason we've opted include Intel's Xeon E5-2690. The Sandy Bridge-EP processor is about 5 years old, and for customers who aren't upgrading their servers every single generation, it's these servers that we believe are most likely to get upgraded in this round. So for server managers looking at finally buying into new hardware, you can get an idea of much return of investment you get. 

Benchmark Configuration and Methodology

All of our testing was conducted on Ubuntu Server "Xenial" 16.04.2 LTS (Linux kernel  4.4.0 64 bit). The compiler that ships with this distribution is GCC 5.4.0. 

You will notice that the DRAM capacity varies among our server configurations. The reason is that we had little time left before today's launch embargo. Removing any hardware is always a risk, so we decided to run our tests without significantly changing the internal hardware of the systems we received from AMD and Intel (SSDs were still replaced). As far as we know, all of our tests fit in 128 GB, so DRAM capacity should not have much influence on performance. But it wil have a impact on total energy consumption, which we will discuss. 

Last but not least, we want to note how the performance graphs have been color-coded. Orange is AMD's EPYC, dark blue is Intel's best (Skylake-SP), and light blue is the previous generation Xeons (Xeon E5-v4) . Gray has been used for the soon-to-be-replaced Xeon v1. 

Intel's Xeon "Purley" Server – S2P2SY3Q (2U Chassis)

CPU Two Intel Xeon Platinum 8176  (2.1 GHz, 28c, 38.5MB L3, 165W)
RAM 384 GB (12x32 GB) Hynix DDR4-2666
Internal Disks SAMSUNG MZ7LM240 (bootdisk)
Intel SSD3710 800 GB (data)
Motherboard Intel S2600WF (Wolf Pass baseboard)
Chipset Intel Wellsburg B0
BIOS version 9/02/2017
PSU 1100W PSU (80+ Platinum)

The typical BIOS settings can be seen below; we enabled hyperthreading and Intel virtualization. 

AMD EPYC 7601 –  (2U Chassis)

Five years after our "Piledriver review", a new AMD server arrives in the Sizing Servers Lab

CPU Two EPYC 7601  (2.2 GHz, 32c, 8x8MB L3, 180W)
RAM 512 GB (16x32 GB) Samsung DDR4-2666 @2400
Internal Disks SAMSUNG MZ7LM240 (bootdisk)
Intel SSD3710 800 GB (data)
Motherboard AMD Speedway
BIOS version To check. 
PSU 1100W PSU (80+ Platinum)

 

Intel's Xeon E5 Server – S2600WT (2U Chassis)

CPU Two Intel Xeon processor E5-2699v4 (2.2 GHz, 22c, 55MB L3, 145W)
Two Intel Xeon processor E5-2690v3 (2.3 GHz, 14c, 35MB L3, 120W)
RAM 256 GB (16x16GB) Kingston DDR-2400
Internal Disks SAMSUNG MZ7LM240 (bootdisk)
Intel SSD3700 800 GB (data)
Motherboard Intel Server Board Wildcat Pass
BIOS version 1/28/2016
PSU Delta Electronics 750W DPS-750XB A (80+ Platinum)

The typical BIOS settings can be seen below. 

HP-G8 (2U Chassis) - Xeon E5-2690

CPU Two Intel Xeon processor E5-2690 (2.9GHz, 8c, 20MB L3, 135W)
RAM 512 GB (16x32GB) Samsung DDR-3 LR-DIMM 1866 MHz @ 1333 MHz
Internal Disks SAMSUNG MZ7LM240 (bootdisk)
Intel SSD3700 800 GB (data)
Motherboard HP G8
BIOS version 9/23/2016
PSU HP 750W (Gold)

 

Other Notes

Both servers are fed by a standard European 230V (16 Amps max.) power line. The room temperature is monitored and kept at 23°C by our Airwell CRACs.

Pricing Comparison: AMD versus Intel Memory Subsystem: Bandwidth
Comments Locked

219 Comments

View All Comments

  • psychobriggsy - Tuesday, July 11, 2017 - link

    Indeed it is a ridiculous comment, and puts the earlier crying about the older Ubuntu and GCC into context - just an Intel Fanboy.

    In fact Intel's core architecture is older, and GCC has been tweaked a lot for it over the years - a slightly old GCC might not get the best out of Skylake, but it will get a lot. Zen is a new core, and GCC has only recently got optimisations for it.
  • EasyListening - Wednesday, July 12, 2017 - link

    I thought he was joking, but I didn't find it funny. So dumb.... makes me sad.
  • blublub - Tuesday, July 11, 2017 - link

    I kinda miss Infinity Fabric on my Haswell CPU and it seems to only have on die - so why is that missing on Haswell wehen Ryzen is an exact copy?
  • blublub - Tuesday, July 11, 2017 - link

    Your actually sound similar to JuanRGA at SA
  • Kevin G - Wednesday, July 12, 2017 - link

    @CajunArson The cache hierarchy is radically different between these designs as well as the port arrangement for dispatch. Scheduling on Ryzen is split between execution resources where as Intel favors a unified approach.
  • bill.rookard - Tuesday, July 11, 2017 - link

    Well, that is something that could be figured out if they (anandtech) had more time with the servers. Remember, they only had a week with the AMD system, and much like many of the games and such, optimizing is a matter of run test, measure, examine results, tweak settings, rinse and repeat. Considering one of the tests took 4 hours to run, having only a week to do this testing means much of the optimization is probably left out.

    They went with a 'generic' set of relative optimizations in the interest of time, and these are the (very interesting) results.
  • CoachAub - Wednesday, July 12, 2017 - link

    Benchmarks just need to be run on as level as a field as possible. Intel has controlled the market so long, software leans their way. Who was optimizing for Opteron chips in 2016-17? ;)
  • theeldest - Tuesday, July 11, 2017 - link

    The compiler used isn't meant to be the the most optimized, but instead it's trying to be representative of actual customer workloads.

    Most customer applications in normal datacenters (not google, aws, azure, etc) are running binaries that are many years behind on optimizations.

    So, yes, they can get better performance. But using those optimizations is not representative of the market they're trying to show numbers for.
  • CajunArson - Tuesday, July 11, 2017 - link

    That might make a tiny bit of sense if most of the benchmarks run were real-world workloads and not C-Ray or POV-Ray.

    The most real-world benchmark in the whole setup was the database benchmark.
  • coder543 - Tuesday, July 11, 2017 - link

    The one benchmark that favors Intel is the "most real-world"? Absolutely, I want AnandTech to do further testing, but your comments do not sound unbiased.

Log in

Don't have an account? Sign up now