Benchmarking Performance: CPU Office Tests

The office programs we use for benchmarking aren't specific programs per-se, but industry standard tests that hold weight with professionals. The goal of these tests is to use an array of software and techniques that a typical office user might encounter, such as video conferencing, document editing, architectural modelling, and so on and so forth. At present we have two such tools to use.

PCMark8

Despite originally coming out in 2008/2009, Futuremark has maintained PCMark8 to remain relevant in 2017. On the scale of complicated tasks, PCMark focuses more on the low-to-mid range of professional workloads, making it a good indicator for what people consider 'office' work. We run the benchmark from the commandline in 'conventional' mode, meaning C++ over OpenCL, to remove the graphics card from the equation and focus purely on the CPU. PCMark8 offers Home, Work and Creative workloads, with some software tests shared and others unique to each benchmark set. 

Office: PCMark8 Creative (non-OpenCL)

Office: PCMark8 Home (non-OpenCL)

Office: PCMark8 Work (non-OpenCL)

Chromium Compile (v56)

Our new compilation test uses Windows 10 Pro, VS Community 2015.3 with the Win10 SDK to combile a nightly build of Chromium. We've fixed the test for a build in late March 2017, and we run a fresh full compile in our test. Compilation is the typical example given of a variable threaded workload - some of the compile and linking is linear, whereas other parts are multithreaded.

Office: Chromium Compile (v56) Time

Office: Chromium Compile (v56)

SYSmark 2014 SE

SYSmark is developed by Bapco, a consortium of industry CPU companies. The goal of SYSmark is to take stripped down versions of popular software, such as Photoshop and Onenote, and measure how long it takes to process certain tasks within that software. The end result is a score for each of the three segments (Office, Media, Data) as well as an overall score. Here a reference system (Core i3-6100, 4GB DDR3, 256GB SSD, Integrated HD 530 graphics) is used to provide a baseline score of 1000 in each test.

A note on contect for these numbers. AMD left Bapco in the last two years, due to differences of opinion on how the benchmarking suites were chosen and AMD believed the tests are angled towards Intel processors and had optimizations to show bigger differences than what AMD felt was present. The following benchmarks are provided as data, but the conflict of opinion between the two companies on the validity of the benchmark is provided as context for the following numbers.

Office: SYSMark 2014 SE (Office)Office: SYSMark 2014 SE (Media)Office: SYSMark 2014 SE (Data)Office: SYSMark 2014 SE (Responsiveness)Office: SYSMark 2014 SE (Overall)

Benchmarking Performance: CPU Encoding Tests Benchmarking Performance: CPU Legacy Tests
Comments Locked

254 Comments

View All Comments

  • Kamgusta - Tuesday, April 18, 2017 - link

    Are you replying to me? I talked about i7-7700 (NOT K), not i7-7700K.
    Which cope very well with some budget DDR4-2400MHz and a budget H270 board with no penalties whatsoever.
  • msroadkill612 - Wednesday, May 3, 2017 - link

    Interesting. ta for sharing. pretty awesome price for the 1600/mobo bundle.

    How did the intel mobo compare for functionality do u think?
  • loguerto - Friday, April 21, 2017 - link

    9 is not prime :)
  • LawJikal - Friday, April 21, 2017 - link

    What I'm surprised to see missing... in virtually all reviews across the web... is any discussion (by a publication or its readers) on the AM4 platform's longevity and upgradability (in addition to its cost, which is readily discussed).

    Any Intel Platform - is almost guaranteed to not accommodate a new or significantly revised microarchitecture... beyond the mere "tick". In order to enjoy a "tock", one MUST purchase a new motherboard (if historical precedent is maintained).

    AMD AM4 Platform - is almost guaranteed to, AT LEAST, accommodate Ryzen "II" and quite possibly Ryzen "III" processors. And, in such cases, only a new processor and BIOS update will be necessary to do so.

    This is not an insignificant point of differentiation.
  • systemBuilder - Friday, April 28, 2017 - link

    I believe the Ryzen core is 20% slower than the Intel core, in instructions per clock. A hyperthread is only about 30% as fast as a full core. With both of these factors thrown in, 6 Ryzen Cores = 5 Intel cores. So the advantage of Ryzen is actually miniscule. It's why I sold all of my AMD stocks in February.
  • willis936 - Thursday, July 27, 2017 - link

    "sold all of my AMD stocks in February"

    I'm cringing.
  • systemBuilder - Friday, April 28, 2017 - link

    Ryzen's cores are 20% slower than Intel's. A hyperthread is only worth (at best) 30% as much as a full core. Therefore, Intel offers 4 cores, AMD offers 6 * 0.8 * 1.3 = 6.24 cores, a decent bump but obviously not significant because few if any games are set up to use more than 8 cores, which in the best case for AMD would be (6 + 0.3 + 0.3)*0.8 = 5.28 cores, a small bump.
  • Cooe - Monday, March 1, 2021 - link

    Except Zen 1 was only about ≈5% slower in IPC vs Kaby Lake, not 20%...
  • msroadkill612 - Monday, May 1, 2017 - link

    Some thoughts from a ~newb, are that if 8 cores are the new black, then maybe 16GB (or 2GB per core) of ram, isnt as generous as it seems?

    Also, its a new paradigm. Tasks which taxed the cpu and thus historically avoided (software raid e.g.), can now be embraced with ~impunity.

    "Normal" CPUs can handle 16 jobs before a queue forms, commonly, an increase by a factor of 8 for a prospective upgrader.
  • Gothmoth - Tuesday, May 2, 2017 - link

    "...affords a comfortable IPC uplift over Broadwell....."

    yeah does it?

    what is comfortable??.... 10%.... who are you trying to kid here?

Log in

Don't have an account? Sign up now