Closing Thoughts

Testing both the IBM POWER8 and the Intel Xeon V4 with an unbiased compiler gave us answers to many of the questions we had. The bandwidth advantage of POWER8's subsystem has been quantified: IBM's most affordeable core can offer twice as much bandwidth than Intel's, at least if your application is not (perfectly) vectorized.

Despite the fact that POWER8 can sustain 8 instructions per clock versus 4 to 5 for modern Intel microarchitectures, chips based on Intel's Broadwell architecture deliver the highest instructions per clock cycle rate in most single threaded situations. The larger OoO buffers (available to a single thread!) and somewhat lower branch misprediction penalty seem to the be most likely causes.

However, the difference is not large: the POWER8 CPU inside the S812LC delivers about 87% of the Xeon's single threaded performance at the same clock. That the POWER8 would excel in memory intensive workloads is not a suprise. However, the fact that the large L2 and eDRAM-based L3 caches offer very low latency (at up to 8 MB) was a surprise to us. That the POWER8 won when using GCC to compile was the logical result but not something we expected.

The POWER8 microarchitecture is clearly built to run at least two threads. On average, two threads gives a massive 43% performance boost, with further peaks of up to 84%. This is in sharp contrast with Intel's SMT, which delivers a 18% performance boost with peaks of up to 32%. Taken further, SMT-4 on the POWER8 chip outright doubles its performance compared to single threaded situations in many of the SPEC CPU subtests.

All in all, the maximum throughput of one POWER8 core is about 43% faster than a similar Broadwell-based Xeon E5 v4. Considering that using more cores hardly ever results in perfect scaling, a POWER8 CPU should be able to keep up with a Xeon with 40 to 60% more cores.

To be fair, we have noticed that the Xeon E5 v4 (Broadwell) consumes less power than its formal TDP specification, in notable contrast to its v3 (Haswell) predecessor. So it must be said that the power consumption of the 10 core POWER8 CPU used here is much higher. On paper this is 190W + 64W Centaur chips, versus 145W for the Intel CPU. Put in practice, we measured 221W at idle on our S812LC, while a similarly equipped Xeon system idled at around 90-100W. So POWER8 should be considered in situations where performance is a higher priority than power consumption, such as databases and (big) data mining. It is not suited for applications that run close to idle much of the time and experience only brief peaks of activity. In those markets, Intel has a large performance-per-watt advantage. But there are definitely opportunities for a more power hungry chip if it can deliver significantly greater performance.

Ultimately the launch of IBM's LC servers deserves our attention: it is a monumental step forward for IBM to compete with Intel in a much larger part of the market. Those servers seem to be competitively priced with similar Xeon systems and can access the same Little Endian data as an x86 server. But can POWER8 based system really deliver a significant performance advantage in real server applications? In the next article we will explore the S812LC and its performance in a real server situations, so stay tuned.

Multi-Threaded Integer Performance: SPEC CPU2006
Comments Locked

124 Comments

View All Comments

  • zodiacfml - Thursday, July 21, 2016 - link

    Like a good TV series, I can't wait for the next episode.
  • aryonoco - Friday, July 22, 2016 - link

    OK, this is literally why Anandtech is the best in the tech journalism industry.

    There is nowhere else on the net that you can find a head to head comparison between POWER and Xeon, and unless you work in the tech department of a Fortune 500 company, this information has just not been available, until now.

    Johan, thank you for your work on this article. I did give you beef in your previous article about using LE Ubuntu but I concede your point. Very happy to you are writing more for Anandtech these days.

    Xeons really need some competition. Whether that competition comes from POWER or ARM or Zen, I am happy to see some competition. IBM has big plans for POWER9. Hopefully this is just the start of things to come.
  • JohanAnandtech - Friday, July 22, 2016 - link

    Thanks! it is very exciting to perform benchmarks that nobody has published yet :-).

    In hindsight, I have to admit that the first article contained too few benchmarks that really mattered for POWER8. Most of our usual testing and scripting did not work, and so after lot of tinkering, swearing and sweat I got some benchmarks working on this "exotic to me" platform. The contrast between what one would expect to see on POWER8 and me being proud of being able to somewhat "tame the beast" could not have been greater :-). In other words, there was a learning curve.
  • tipoo - Friday, July 22, 2016 - link

    I found it very interesting as well and would certainly not mind seeing more from this space, like maybe Xeon Phi and SPARC M7
  • jospoortvliet - Tuesday, July 26, 2016 - link

    Amen. But, to not ask to much, just the prospect of part 2 of the Power benchmark is already super exciting. Yes, the Internetz need more of this!
  • Daniel Egger - Friday, July 22, 2016 - link

    Not quite sure what the Endianess of a systems adds to the competitive factor. Maybe someone could elaborate why it is so important to run a system in LE?
  • ZeDestructor - Friday, July 22, 2016 - link

    Not much, really, with the compilers being good and all that.

    Really, it's quite clearly there just for some excellent alliteration.
  • JohanAnandtech - Friday, July 22, 2016 - link

    Basically LE reduces the barrier for an IBM server being integrated in x86 dominated datacenter.

    see https://www.ibm.com/developerworks/community/blogs...

    Just a few reasons:

    "Numerous clients, software partners, and IBM’s own software developers have told us that porting their software to Power becomes simpler if the Linux environment on Power supports little endian mode, more closely matching the environment provided by Linux on x86. This new level of support will *** lower the barrier to entry for porting Linux on x86 software to Linux on Power **."

    "A system accelerator programmer (GPU or FPGA) who needs to share memory with applications running in the system processor must share data in an pre-determined endianness for correct application functionality."
  • Daniel Egger - Friday, July 22, 2016 - link

    While correct in theory, this hasn't been a problem for the last 20 years. People are used to using BE on PPC/POWER, the software, the drivers and the infrastructure are very mature (as a matter of fact it was my job 15 years ago to make sure they are). PPC/POWER actually have configurable endianess so if someone wanted to go LE earlier it would have easily been possible but only few ever attempted that stunt; so why have the big disruption now?
  • KAlmquist - Friday, July 22, 2016 - link

    I assume that this is about selling POWER boxes to companies that currently run all x86 servers, and have a bunch of custom software that they might be willing to recompile. If the customer has to spend a bunch of time fixing endian dependencies in his software in order to get it to work on POWER, it will probably be less expensive for them to simply stick with x86.

Log in

Don't have an account? Sign up now