Memory Subsystem: Latency Measurements

There is no doubt about it: the performance of modern CPUs depends heavily on the cache subsystem. And some applications depend heavily on the DRAM subsystem too. We used LMBench in an effort to try to measure latency. Our favorite tool to do this, Tinymembench, does not support the POWER architecture yet. That is a pity, because it is a lot more accurate and modern (as it can test with two outstanding requests).

The numbers we looked at were "Random load latency stride=16 Bytes" (LMBench).

Mem
Hierarchy
IBM POWER8 Intel Broadwell
Xeon E5-2640v4
DDR4-2133
Intel Broadwell
Xeon E5-2699v4
DDR4-2400
L1 Cache (cycles) 3 4 4
L2 Cache (cycles) 13 12-15 12-15
L3 Cache 4-8 MB(cycles) 27-28 (8 ns) 49-50 50
16 MB (ns) 55 ns 26 ns 21 ns
32-64 MB (ns) 55-57 ns 75-92 ns 80-96 ns
Memory 96-128 MB (ns) 67-74 ns 90-91 ns 96 ns
Memory 384-512 MB (ns) 89-91 ns 91-93 ns 95 ns

(Note that the numbers for Intel are higher than what we reported in our Cavium ThunderX review. The reason is that we are now using the numbers of LMBench and not those of Tinymembench.)

A 64 KB L1 cache with 4 read ports that can run at 4+ GHz speeds and still maintain a 3 cycle load latency is nothing less than the pinnacle of engineering. The L2 cache excels too, being twice as large (512 KB) and still offering the same latency as Intel's L2.

Once we get to the eDRAM L3 cache, our readings get a lot more confusing. The L3 cache is blistering fast as long as you only access the part that is closest to the core (8 MB). Go beyond that limit (16 MB), and you get a latency that is no less than 7 times worse. It looks like we actually hitting the Centaur chips, because the latency stays the same at 32 and 64 MB.

Intel has a much more predictable latency chart. Xeon's L3 cache needs about 50 cycles, and once you get into DRAM, you get a 90-96 ns latency. The "transistion phase" from 26 ns L3 to 90 ns DRAM is much smaller.

Comparatively, that "transition phase" seems relatively large on the IBM POWER8. We have to go beyond 128 MB before we get the full DRAM latency. And even then the Centaur chip seems to handle things well: the octal DDR-3 1333 MHz DRAM system delivers the same or even slightly better latency as the DDR4-2400 memory on the Xeon.

In summary, IBM's POWER8 has a twice as fast 8 MB L3, while Intel's L3 is vastly better in the 9-32 MB zone. But once you go beyond 32 MB, the IBM memory subsystem delivers better latency. At a significant power cost we must add, because those 4 memory buffers need about 64 Watts.

Memory Subsystem: Bandwidth Single-Threaded Integer Performance: SPEC CPU2006
Comments Locked

124 Comments

View All Comments

  • JohanAnandtech - Thursday, July 21, 2016 - link

    I don't think so, we just expressed it in ns so you can compare with IBM's numbers more easily. Can you elaborate why you think they are wrong?
  • Taracta - Thursday, July 21, 2016 - link

    Sorry, mixed up cycles with ns especially after reading the part about transition for the Intel from L3 to MEM.
  • Sahrin - Thursday, July 21, 2016 - link

    Yikes. Pictures without captions. Anandtech is terrible about this. ALWAYS caption your pictures, guys.
  • djayjp - Thursday, July 21, 2016 - link

    Are bar graphs not a thing anymore...?
  • Drumsticks - Thursday, July 21, 2016 - link

    Afaik, Anandtech has always used the chart when presenting things like SPEC. I'd guess it'd be for clutter reasons, but the exact reason is up to the editors to mention.
  • JohanAnandtech - Thursday, July 21, 2016 - link

    The reason for me is simply to give you the exact numbers and allow people to do their own comparisons.
  • Drumsticks - Thursday, July 21, 2016 - link

    Just to be clear, the Xeon CPU used today is 3 times more expensive than the Power8 CPU benchmarked? That's really impressive, isn't it? The Power8 has a pretty significant power increase, but if it's 43% faster, that cuts into the perf/w gap.

    I know we've only looked at SPEC so far in round 2, but this looks like a good showing for IBM. How big is the efficiency gap between 22nm SOI and 14nm FinFet? Any estimates?
  • Michael Bay - Thursday, July 21, 2016 - link

    Selling at a loss is hardly impressive, especially in IBM`s case. This thing is literally their last chance.
  • tipoo - Friday, July 22, 2016 - link

    Is it at a loss, or is it just not at crazy Intel margins?
  • Michael Bay - Saturday, July 23, 2016 - link

    They`d have to have a healthy margin to offset all the R&D, plus IBM as a whole is not in a good financial position. Consider they sold their fab capability not so long ago.

Log in

Don't have an account? Sign up now