System Specs

Lastly, let's take a look at some high level specs. It is interesting to note that the IBM POWER8 inside our S812LC server is a 10-core Single Chip Module. In other words it is a single 10-core die, unlike the 10-core chip in our S822L server which was made of two 5-core dies. That should improve performance for applications that use many cores and need to synchronize, as the latency of hopping from one chip to another is tangible.

The SKU inside the S812LC is available to third parties such Supermicro and Tyan. This cheaper SKU runs at "only" 2.92 GHz, but will easily turbo to 3.5 GHz.

Feature IBM POWER8
(Available in LC servers)
Intel
Broadwell (Xeon E5 v4)
Process tech. 22nm SOI 14nm FinFET
Max clock 2.92-3.5 GHz 2.2-3.6 GHz
Max. core count
Max. thread count
10@2.92 GHz (3.5 GHz Turbo)
80 SMT
22@2.2 GHz (2.8 GHz turbo)
44 SMT
TDP 190W 145W
L1-I​ / L1-D Cache 32 KB/64 KB 32 KB/32 KB
L2 Cache 512 KB SRAM ​per core 256 KB SRAM ​per core
L3 Cache 8 MB eDRAM ​per core 2.5 MB SRAM per core
L4 Cache 16 MB eDRAM ​per MBC
(64 MB total)
None
Memory 1 TB per socket - 32 slots
(32 GB per DIMM)
0.768 TB per socket - 12 slots
(64 GB per DIMM)
Theoretical Memory Bandwidth 76.8 GB/s Read
38.4 GB/s Write
76.8 GB/s Read or Write
PCIe 3.0 Lanes 32 Lanes 40 Lanes

The Xeon and IBM POWER8 have totally different memory subsystems. The IBM POWER8 connects to 4 "Centaur" buffer cache chips, which have each a 19.2 GB/s read and 9.6 GB/s write link to the processor, or 28.8 GB/s in total. This is a more efficient connection than the Xeon which has a simpler half-duplex connection to the RAM: it can either write with 76.8 GB/s to the 4 channels or read from the 4 channels. Considering that reads happen twice as much as writes, the IBM architecture is - in theory - better balanced and has more aggregated bandwidth.

Heavy SMT: Multi Threading Prowess Configuration and Benchmark Selection
Comments Locked

124 Comments

View All Comments

  • DomOfSF - Thursday, July 21, 2016 - link

    Johan de Gelas: blowing minds and educating "the rest of us" since...I dunno, a really long time ago (especially in internet years). Great job on the data, but the real good stuff is in your thoughts and analysis. Thank you!
  • close - Saturday, July 23, 2016 - link

    Over a decade...
  • JohanAnandtech - Thursday, July 28, 2016 - link

    13 years in the server business, 18 years now of reviewing hardware :-). Thx !!
  • jamyryals - Thursday, July 21, 2016 - link

    It seems to me, Intel's focus on bringing their CPU architecture design all the way down to 5W is the reason IBM is able to stand out against them. Intel is focused on creating a scalable architecture while IBM can throw the whole kitchen sink at the server market.

    Fascinating article, I really enjoyed it.
  • smilingcrow - Thursday, July 21, 2016 - link

    Intel has plenty of unique features in their server platforms which aren't in the consumer platforms so I don't think that is the issue.
  • jospoortvliet - Tuesday, July 26, 2016 - link

    The basic design of the core still is the same so there is probably at least some truth in the statement of Jamy.
  • Kevin G - Wednesday, July 27, 2016 - link

    Up until this point. Consumer SkyLake and server SkyLake are going to be two different designs. They're certainly related but server SkyLake will have 512 KB of L2 cache per core and support AVX-512 instructions.

    Server SkyLake is also going to support 3D Xpoint DIMMs, though that difference is more with the platform/chipset than the actual CPU core.
  • floobit - Thursday, July 21, 2016 - link

    Very interesting. It seems odd to me that they chose to configure it in a 2U - except for big data clusters, most of the market space I see this playing is dominated by FC to a SAN. Is this a play in the big data cluster space, or the more traditional AIX/DB2/big iron that IBM has owned for so long?
    Some questions I'd have:
    what virtualization is possible with this architecture? presumably just the standard PowerVM? How well does that work?
    What is the impact of IO latency? Could you throw a P3700 or two in here?
  • JohanAnandtech - Thursday, July 21, 2016 - link

    2U: Besides big data storage needs, I suspect 2U is necessary for adequate cooling for the POWER8 chip.

    Virtualization: Linux KVM works well as far as I know.

    We actually tried out a P3700 in there (see: http://www.anandtech.com/show/9567/the-power-8-rev... ) and it worked very well. I asked IBM what a customer should expect when using third party storage (probably no support, but how about waranty?) but no answer yet.
  • mystic-pokemon - Friday, July 22, 2016 - link

    Hi Johan
    2U is not necessary for cooling a POWER 8 Chip. We do that better with our Barreleye (1.25 OU design). Even storage wise Barreleye has 15 Disk storage bay that can be seen in below links.

    http://www.v3.co.uk/v3-uk/news/2453992/google-and-...

    Let me know if you wanna ever benchmark a Barreleye. What specific POWER8 proc are you benchmarking with ? (Turismo?). I believe it does slightly better than S812LC on many benchmarks based on the variant of power8 proc S812LC runs.

Log in

Don't have an account? Sign up now